Cargando…

Hepatic stellate cells promote upregulation of epithelial cell adhesion molecule and epithelial-mesenchymal transition in hepatic cancer cells

Microenvironment plays an important role in epithelial-mesenchymal transition (EMT) and stemness of cells in hepatocellular carcinoma (HCC). Epithelial cell adhesion molecule (EpCAM) is known as a tumor stemness marker of HCC. To investigate the relationship between microenvi-ronment and stemness, w...

Descripción completa

Detalles Bibliográficos
Autores principales: NAGAHARA, TERUYA, SHIRAHA, HIDENORI, SAWAHARA, HIROAKI, UCHIDA, DAISUKE, TAKEUCHI, YASUTO, IWAMURO, MASAYA, KATAOKA, JUNRO, HORIGUCHI, SHIGERU, KUWAKI, TAKESHI, ONISHI, HIDEKI, NAKAMURA, SHINICHIRO, TAKAKI, AKINOBU, NOUSO, KAZUHIRO, YAMAMOTO, KAZUHIDE
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4530901/
https://www.ncbi.nlm.nih.gov/pubmed/26165819
http://dx.doi.org/10.3892/or.2015.4126
Descripción
Sumario:Microenvironment plays an important role in epithelial-mesenchymal transition (EMT) and stemness of cells in hepatocellular carcinoma (HCC). Epithelial cell adhesion molecule (EpCAM) is known as a tumor stemness marker of HCC. To investigate the relationship between microenvi-ronment and stemness, we performed an in vitro co-culture assay. Four HCC cell lines (HepG2, Hep3B, HuH-7 and PLC/PRF/5) were co-cultured with the TWNT-1 immortalized hepatic stellate cells (HSCs), which create a microenvironment with HCC. Cell proliferation ability was analyzed by flow cytometry (FCM) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphe-nyltetrazolium bromide (MTT) assay, while migration ability was assessed by a wound healing assay. Expression of EpCAM was analyzed by immunoblotting and FCM. HCC cell lines were co-cultured with TWNT-1 treated with small interfering RNA (siRNA) for TGF-β and HB-EGF; we then analyzed proliferation, migration ability and protein expression using the methods described above. Proliferation ability was unchanged in HCC cell lines co-cultured with TWNT-1. Migration ability was increased in HCC cell lines (HepG2, Hep3B, HuH-7 and PLC/PRF/5) directly (216.2±67.0, 61.0±22.0, 124.0±66.2 and 51.5±40.3%) and indirectly (102.5±22.0, 84.6±30.9, 86.1±25.7 and 73.9±29.7%) co-cultured with TWNT-1 compared with the HCC uni-culture. Immunoblot analysis revealed increased EpCAM expression in the HCC cell lines co-cultured with TWNT-1. Flow cytometry revealed that the population of E-cadherin(−)/N-cadherin(+) and EpCAM-positive cells increased and accordingly, EMT and stemness in the HCC cell line were activated. These results were similar in the directly and indirectly co-cultured samples, indicating that humoral factors were at play. Conversely, HCC cell lines co-cultured with siRNA-treated TWNT-1 showed decreased migration ability, a decreased population of EpCAM-positive and E-cadherin(−)/N-cadherin(+) cells. Taken together, humoral factors secreted from TWNT-1 promote upregulation of EpCAM and EMT in hepatic cancer cells.