Cargando…
Stochastic simulation of Boolean rxncon models: towards quantitative analysis of large signaling networks
BACKGROUND: Cellular decision-making is governed by molecular networks that are highly complex. An integrative understanding of these networks on a genome wide level is essential to understand cellular health and disease. In most cases however, such an understanding is beyond human comprehension and...
Autores principales: | Mori, Tomoya, Flöttmann, Max, Krantz, Marcus, Akutsu, Tatsuya, Klipp, Edda |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4531511/ https://www.ncbi.nlm.nih.gov/pubmed/26259567 http://dx.doi.org/10.1186/s12918-015-0193-8 |
Ejemplares similares
-
Identification of periodic attractors in Boolean networks using a priori information
por: Münzner, Ulrike, et al.
Publicado: (2022) -
kboolnet: a toolkit for the verification, validation, and visualization of reaction-contingency (rxncon) models
por: Carretero Chavez, Willow, et al.
Publicado: (2023) -
Reaction-contingency based bipartite Boolean modelling
por: Flöttmann, Max, et al.
Publicado: (2013) -
A Stochastic Model of Epigenetic Dynamics in Somatic Cell Reprogramming
por: Flöttmann, Max, et al.
Publicado: (2012) -
A dynamical stochastic model of yeast translation across the cell cycle
por: Seeger, Martin, et al.
Publicado: (2023)