Cargando…
Discovery of an Unconventional Centromere in Budding Yeast Redefines Evolution of Point Centromeres
Centromeres are the chromosomal regions promoting kinetochore assembly for chromosome segregation. In many eukaryotes, the centromere consists of up to mega base pairs of DNA. On such “regional centromeres,” kinetochore assembly is mainly defined by epigenetic regulation [1]. By contrast, a clade of...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cell Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4533239/ https://www.ncbi.nlm.nih.gov/pubmed/26166782 http://dx.doi.org/10.1016/j.cub.2015.06.023 |
_version_ | 1782385305918111744 |
---|---|
author | Kobayashi, Norihiko Suzuki, Yutaka Schoenfeld, Lori W. Müller, Carolin A. Nieduszynski, Conrad Wolfe, Kenneth H. Tanaka, Tomoyuki U. |
author_facet | Kobayashi, Norihiko Suzuki, Yutaka Schoenfeld, Lori W. Müller, Carolin A. Nieduszynski, Conrad Wolfe, Kenneth H. Tanaka, Tomoyuki U. |
author_sort | Kobayashi, Norihiko |
collection | PubMed |
description | Centromeres are the chromosomal regions promoting kinetochore assembly for chromosome segregation. In many eukaryotes, the centromere consists of up to mega base pairs of DNA. On such “regional centromeres,” kinetochore assembly is mainly defined by epigenetic regulation [1]. By contrast, a clade of budding yeasts (Saccharomycetaceae) has a “point centromere” of 120–200 base pairs of DNA, on which kinetochore assembly is defined by the consensus DNA sequence [2, 3]. During evolution, budding yeasts acquired point centromeres, which replaced ancestral, regional centromeres [4]. All known point centromeres among different yeast species share common consensus DNA elements (CDEs) [5, 6], implying that they evolved only once and stayed essentially unchanged throughout evolution. Here, we identify a yeast centromere that challenges this view: that of the budding yeast Naumovozyma castellii is the first unconventional point centromere with unique CDEs. The N. castellii centromere CDEs are essential for centromere function but have different DNA sequences from CDEs in other point centromeres. Gene order analyses around N. castellii centromeres indicate their unique, and separate, evolutionary origin. Nevertheless, they are still bound by the ortholog of the CBF3 complex, which recognizes CDEs in other point centromeres. The new type of point centromere originated prior to the divergence between N. castellii and its close relative Naumovozyma dairenensis and disseminated to all N. castellii chromosomes through extensive genome rearrangement. Thus, contrary to the conventional view, point centromeres can undergo rapid evolutionary changes. These findings give new insights into the evolution of point centromeres. |
format | Online Article Text |
id | pubmed-4533239 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Cell Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-45332392015-08-13 Discovery of an Unconventional Centromere in Budding Yeast Redefines Evolution of Point Centromeres Kobayashi, Norihiko Suzuki, Yutaka Schoenfeld, Lori W. Müller, Carolin A. Nieduszynski, Conrad Wolfe, Kenneth H. Tanaka, Tomoyuki U. Curr Biol Report Centromeres are the chromosomal regions promoting kinetochore assembly for chromosome segregation. In many eukaryotes, the centromere consists of up to mega base pairs of DNA. On such “regional centromeres,” kinetochore assembly is mainly defined by epigenetic regulation [1]. By contrast, a clade of budding yeasts (Saccharomycetaceae) has a “point centromere” of 120–200 base pairs of DNA, on which kinetochore assembly is defined by the consensus DNA sequence [2, 3]. During evolution, budding yeasts acquired point centromeres, which replaced ancestral, regional centromeres [4]. All known point centromeres among different yeast species share common consensus DNA elements (CDEs) [5, 6], implying that they evolved only once and stayed essentially unchanged throughout evolution. Here, we identify a yeast centromere that challenges this view: that of the budding yeast Naumovozyma castellii is the first unconventional point centromere with unique CDEs. The N. castellii centromere CDEs are essential for centromere function but have different DNA sequences from CDEs in other point centromeres. Gene order analyses around N. castellii centromeres indicate their unique, and separate, evolutionary origin. Nevertheless, they are still bound by the ortholog of the CBF3 complex, which recognizes CDEs in other point centromeres. The new type of point centromere originated prior to the divergence between N. castellii and its close relative Naumovozyma dairenensis and disseminated to all N. castellii chromosomes through extensive genome rearrangement. Thus, contrary to the conventional view, point centromeres can undergo rapid evolutionary changes. These findings give new insights into the evolution of point centromeres. Cell Press 2015-08-03 /pmc/articles/PMC4533239/ /pubmed/26166782 http://dx.doi.org/10.1016/j.cub.2015.06.023 Text en © 2015 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Report Kobayashi, Norihiko Suzuki, Yutaka Schoenfeld, Lori W. Müller, Carolin A. Nieduszynski, Conrad Wolfe, Kenneth H. Tanaka, Tomoyuki U. Discovery of an Unconventional Centromere in Budding Yeast Redefines Evolution of Point Centromeres |
title | Discovery of an Unconventional Centromere in Budding Yeast Redefines Evolution of Point Centromeres |
title_full | Discovery of an Unconventional Centromere in Budding Yeast Redefines Evolution of Point Centromeres |
title_fullStr | Discovery of an Unconventional Centromere in Budding Yeast Redefines Evolution of Point Centromeres |
title_full_unstemmed | Discovery of an Unconventional Centromere in Budding Yeast Redefines Evolution of Point Centromeres |
title_short | Discovery of an Unconventional Centromere in Budding Yeast Redefines Evolution of Point Centromeres |
title_sort | discovery of an unconventional centromere in budding yeast redefines evolution of point centromeres |
topic | Report |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4533239/ https://www.ncbi.nlm.nih.gov/pubmed/26166782 http://dx.doi.org/10.1016/j.cub.2015.06.023 |
work_keys_str_mv | AT kobayashinorihiko discoveryofanunconventionalcentromereinbuddingyeastredefinesevolutionofpointcentromeres AT suzukiyutaka discoveryofanunconventionalcentromereinbuddingyeastredefinesevolutionofpointcentromeres AT schoenfeldloriw discoveryofanunconventionalcentromereinbuddingyeastredefinesevolutionofpointcentromeres AT mullercarolina discoveryofanunconventionalcentromereinbuddingyeastredefinesevolutionofpointcentromeres AT nieduszynskiconrad discoveryofanunconventionalcentromereinbuddingyeastredefinesevolutionofpointcentromeres AT wolfekennethh discoveryofanunconventionalcentromereinbuddingyeastredefinesevolutionofpointcentromeres AT tanakatomoyukiu discoveryofanunconventionalcentromereinbuddingyeastredefinesevolutionofpointcentromeres |