Cargando…
Analysis of changes to mRNA levels and CTCF occupancy upon TFII-I knockdown
CTCF is a key regulator of nuclear chromatin structure, chromatin organization and gene regulation. The impact of CTCF on transcriptional output is quite varied, ranging from repression, to transcriptional pausing and transactivation. The multifunctional nature of CTCF is mediated, in part, through...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4535928/ https://www.ncbi.nlm.nih.gov/pubmed/26484167 http://dx.doi.org/10.1016/j.gdata.2014.09.012 |
Sumario: | CTCF is a key regulator of nuclear chromatin structure, chromatin organization and gene regulation. The impact of CTCF on transcriptional output is quite varied, ranging from repression, to transcriptional pausing and transactivation. The multifunctional nature of CTCF is mediated, in part, through differential association with protein partners having unique properties. We identified the general transcription factor TFII-I as an interacting partner of CTCF. To gain an understanding of the function of TFII-I in regulating gene expression and CTCF binding genome wide, we conducted microarray experiments following TFII-I knockdown and chromatin immunoprecipitation of CTCF followed by next generation sequencing (ChIP-seq) from the same TFII-I depleted cells. Here, we described the experimental design and the quality control and analysis that were performed on the dataset. The data is publicly available through the GEO database with accession number GSE60918. The interpretation and description of these data are included in a manuscript in revision (1). |
---|