Cargando…

Diet- and Genetically-Induced Obesity Differentially Affect the Fecal Microbiome and Metabolome in Apc(1638N) Mice

Obesity is a risk factor for colorectal cancer (CRC), and alterations in the colonic microbiome and metabolome may be mechanistically involved in this relationship. The relative contribution of diet and obesity per se are unclear. We compared the effect of diet- and genetically-induced obesity on th...

Descripción completa

Detalles Bibliográficos
Autores principales: Pfalzer, Anna C., Nesbeth, Paula-Dene C., Parnell, Laurence D., Iyer, Lakshmanan K., Liu, Zhenhua, Kane, Anne V., Chen, C-Y. Oliver, Tai, Albert K., Bowman, Thomas A., Obin, Martin S., Mason, Joel B., Greenberg, Andrew S., Choi, Sang-Woon, Selhub, Jacob, Paul, Ligi, Crott, Jimmy W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4540493/
https://www.ncbi.nlm.nih.gov/pubmed/26284788
http://dx.doi.org/10.1371/journal.pone.0135758
Descripción
Sumario:Obesity is a risk factor for colorectal cancer (CRC), and alterations in the colonic microbiome and metabolome may be mechanistically involved in this relationship. The relative contribution of diet and obesity per se are unclear. We compared the effect of diet- and genetically-induced obesity on the intestinal microbiome and metabolome in a mouse model of CRC. Apc(1638N) mice were made obese by either high fat (HF) feeding or the presence of the Lepr(db/db) (DbDb) mutation. Intestinal tumors were quantified and stool microbiome and metabolome were profiled. Genetic obesity, and to a lesser extent HF feeding, promoted intestinal tumorigenesis. Each induced distinct microbial patterns: taxa enriched in HF were mostly Firmicutes (6 of 8) while those enriched in DbDb were split between Firmicutes (7 of 12) and Proteobacteria (5 of 12). Parabecteroides distasonis was lower in tumor-bearing mice and its abundance was inversely associated with colonic Il1b production (p<0.05). HF and genetic obesity altered the abundance of 49 and 40 fecal metabolites respectively, with 5 in common. Of these 5, adenosine was also lower in obese and in tumor-bearing mice (p<0.05) and its concentration was inversely associated with colonic Il1b and Tnf production (p<0.05). HF and genetic obesity differentially alter the intestinal microbiome and metabolome. A depletion of adenosine and P.distasonis in tumor-bearing mice could play a mechanistic role in tumor formation. Adenosine and P. distasonis have previously been shown to be anti-inflammatory in the colon and we postulate their reduction could promote tumorigenesis by de-repressing inflammation.