Cargando…
VisitSense: Sensing Place Visit Patterns from Ambient Radio on Smartphones for Targeted Mobile Ads in Shopping Malls
In this paper, we introduce a novel smartphone framework called VisitSense that automatically detects and predicts a smartphone user’s place visits from ambient radio to enable behavioral targeting for mobile ads in large shopping malls. VisitSense enables mobile app developers to adopt visit-patter...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4541934/ https://www.ncbi.nlm.nih.gov/pubmed/26193275 http://dx.doi.org/10.3390/s150717274 |
_version_ | 1782386466862661632 |
---|---|
author | Kim, Byoungjip Kang, Seungwoo Ha, Jin-Young Song, Junehwa |
author_facet | Kim, Byoungjip Kang, Seungwoo Ha, Jin-Young Song, Junehwa |
author_sort | Kim, Byoungjip |
collection | PubMed |
description | In this paper, we introduce a novel smartphone framework called VisitSense that automatically detects and predicts a smartphone user’s place visits from ambient radio to enable behavioral targeting for mobile ads in large shopping malls. VisitSense enables mobile app developers to adopt visit-pattern-aware mobile advertising for shopping mall visitors in their apps. It also benefits mobile users by allowing them to receive highly relevant mobile ads that are aware of their place visit patterns in shopping malls. To achieve the goal, VisitSense employs accurate visit detection and prediction methods. For accurate visit detection, we develop a change-based detection method to take into consideration the stability change of ambient radio and the mobility change of users. It performs well in large shopping malls where ambient radio is quite noisy and causes existing algorithms to easily fail. In addition, we proposed a causality-based visit prediction model to capture the causality in the sequential visit patterns for effective prediction. We have developed a VisitSense prototype system, and a visit-pattern-aware mobile advertising application that is based on it. Furthermore, we deploy the system in the COEX Mall, one of the largest shopping malls in Korea, and conduct diverse experiments to show the effectiveness of VisitSense. |
format | Online Article Text |
id | pubmed-4541934 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-45419342015-08-26 VisitSense: Sensing Place Visit Patterns from Ambient Radio on Smartphones for Targeted Mobile Ads in Shopping Malls Kim, Byoungjip Kang, Seungwoo Ha, Jin-Young Song, Junehwa Sensors (Basel) Article In this paper, we introduce a novel smartphone framework called VisitSense that automatically detects and predicts a smartphone user’s place visits from ambient radio to enable behavioral targeting for mobile ads in large shopping malls. VisitSense enables mobile app developers to adopt visit-pattern-aware mobile advertising for shopping mall visitors in their apps. It also benefits mobile users by allowing them to receive highly relevant mobile ads that are aware of their place visit patterns in shopping malls. To achieve the goal, VisitSense employs accurate visit detection and prediction methods. For accurate visit detection, we develop a change-based detection method to take into consideration the stability change of ambient radio and the mobility change of users. It performs well in large shopping malls where ambient radio is quite noisy and causes existing algorithms to easily fail. In addition, we proposed a causality-based visit prediction model to capture the causality in the sequential visit patterns for effective prediction. We have developed a VisitSense prototype system, and a visit-pattern-aware mobile advertising application that is based on it. Furthermore, we deploy the system in the COEX Mall, one of the largest shopping malls in Korea, and conduct diverse experiments to show the effectiveness of VisitSense. MDPI 2015-07-16 /pmc/articles/PMC4541934/ /pubmed/26193275 http://dx.doi.org/10.3390/s150717274 Text en © 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kim, Byoungjip Kang, Seungwoo Ha, Jin-Young Song, Junehwa VisitSense: Sensing Place Visit Patterns from Ambient Radio on Smartphones for Targeted Mobile Ads in Shopping Malls |
title | VisitSense: Sensing Place Visit Patterns from Ambient Radio on Smartphones for Targeted Mobile Ads in Shopping Malls |
title_full | VisitSense: Sensing Place Visit Patterns from Ambient Radio on Smartphones for Targeted Mobile Ads in Shopping Malls |
title_fullStr | VisitSense: Sensing Place Visit Patterns from Ambient Radio on Smartphones for Targeted Mobile Ads in Shopping Malls |
title_full_unstemmed | VisitSense: Sensing Place Visit Patterns from Ambient Radio on Smartphones for Targeted Mobile Ads in Shopping Malls |
title_short | VisitSense: Sensing Place Visit Patterns from Ambient Radio on Smartphones for Targeted Mobile Ads in Shopping Malls |
title_sort | visitsense: sensing place visit patterns from ambient radio on smartphones for targeted mobile ads in shopping malls |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4541934/ https://www.ncbi.nlm.nih.gov/pubmed/26193275 http://dx.doi.org/10.3390/s150717274 |
work_keys_str_mv | AT kimbyoungjip visitsensesensingplacevisitpatternsfromambientradioonsmartphonesfortargetedmobileadsinshoppingmalls AT kangseungwoo visitsensesensingplacevisitpatternsfromambientradioonsmartphonesfortargetedmobileadsinshoppingmalls AT hajinyoung visitsensesensingplacevisitpatternsfromambientradioonsmartphonesfortargetedmobileadsinshoppingmalls AT songjunehwa visitsensesensingplacevisitpatternsfromambientradioonsmartphonesfortargetedmobileadsinshoppingmalls |