Cargando…

Fractal heterogeneity in minimal matrix models of scars modulates stiff-niche stem-cell responses via the nuclear exit of a mechanorepressor

Scarring is a long-lasting problem in higher animals, and reductionist approaches could aid in developing treatments. Here, we show that co-polymerization of collagen-I with polyacrylamide produces minimal matrix models of scars (MMMS), in which fractal-fiber bundles segregate heterogeneously to the...

Descripción completa

Detalles Bibliográficos
Autores principales: P. Dingal, P. C. Dave, Bradshaw, Andrew M., Cho, Sangkyun, Raab, Matthew, Buxboim, Amnon, Swift, Joe, Discher, Dennis E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4545733/
https://www.ncbi.nlm.nih.gov/pubmed/26168347
http://dx.doi.org/10.1038/nmat4350
Descripción
Sumario:Scarring is a long-lasting problem in higher animals, and reductionist approaches could aid in developing treatments. Here, we show that co-polymerization of collagen-I with polyacrylamide produces minimal matrix models of scars (MMMS), in which fractal-fiber bundles segregate heterogeneously to the hydrogel subsurface. Matrix stiffens locally – as in scars – while allowing separate control over adhesive-ligand density. The MMMS elicits scar-like phenotypes from mesenchymal stem cells (MSCs): cells spread and polarize quickly, increasing nucleoskeletal lamin-A yet expressing the ‘scar marker’, smooth muscle actin (SMA) more slowly. Surprisingly, expression responses to MMMS exhibit less cell-to-cell noise than homogeneously stiff gels. Such differences from bulk-average responses arise because a strong SMA repressor, NKX2.5, slowly exits the nucleus on rigid matrices. NKX2.5 overexpression overrides rigid phenotypes, inhibiting SMA and cell spreading, while cytoplasm-localized NKX2.5 mutants degrade in well-spread cells. MSCs thus form a ‘mechanical memory’ of rigidity by progressively suppressing NKX2.5, thereby elevating SMA in a scar-like state.