Cargando…
Cell-based screen for altered nuclear phenotypes reveals senescence progression in polyploid cells after Aurora kinase B inhibition
Cellular senescence is a widespread stress response and is widely considered to be an alternative cancer therapeutic goal. Unlike apoptosis, senescence is composed of a diverse set of subphenotypes, depending on which of its associated effector programs are engaged. Here we establish a simple and se...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The American Society for Cell Biology
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4551313/ https://www.ncbi.nlm.nih.gov/pubmed/26133385 http://dx.doi.org/10.1091/mbc.E15-01-0003 |
_version_ | 1782387556135993344 |
---|---|
author | Sadaie, Mahito Dillon, Christian Narita, Masashi Young, Andrew R. J. Cairney, Claire J. Godwin, Lauren S. Torrance, Christopher J. Bennett, Dorothy C. Keith, W. Nicol Narita, Masashi |
author_facet | Sadaie, Mahito Dillon, Christian Narita, Masashi Young, Andrew R. J. Cairney, Claire J. Godwin, Lauren S. Torrance, Christopher J. Bennett, Dorothy C. Keith, W. Nicol Narita, Masashi |
author_sort | Sadaie, Mahito |
collection | PubMed |
description | Cellular senescence is a widespread stress response and is widely considered to be an alternative cancer therapeutic goal. Unlike apoptosis, senescence is composed of a diverse set of subphenotypes, depending on which of its associated effector programs are engaged. Here we establish a simple and sensitive cell-based prosenescence screen with detailed validation assays. We characterize the screen using a focused tool compound kinase inhibitor library. We identify a series of compounds that induce different types of senescence, including a unique phenotype associated with irregularly shaped nuclei and the progressive accumulation of G1 tetraploidy in human diploid fibroblasts. Downstream analyses show that all of the compounds that induce tetraploid senescence inhibit Aurora kinase B (AURKB). AURKB is the catalytic component of the chromosome passenger complex, which is involved in correct chromosome alignment and segregation, the spindle assembly checkpoint, and cytokinesis. Although aberrant mitosis and senescence have been linked, a specific characterization of AURKB in the context of senescence is still required. This proof-of-principle study suggests that our protocol is capable of amplifying tetraploid senescence, which can be observed in only a small population of oncogenic RAS-induced senescence, and provides additional justification for AURKB as a cancer therapeutic target. |
format | Online Article Text |
id | pubmed-4551313 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | The American Society for Cell Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-45513132015-11-16 Cell-based screen for altered nuclear phenotypes reveals senescence progression in polyploid cells after Aurora kinase B inhibition Sadaie, Mahito Dillon, Christian Narita, Masashi Young, Andrew R. J. Cairney, Claire J. Godwin, Lauren S. Torrance, Christopher J. Bennett, Dorothy C. Keith, W. Nicol Narita, Masashi Mol Biol Cell Articles Cellular senescence is a widespread stress response and is widely considered to be an alternative cancer therapeutic goal. Unlike apoptosis, senescence is composed of a diverse set of subphenotypes, depending on which of its associated effector programs are engaged. Here we establish a simple and sensitive cell-based prosenescence screen with detailed validation assays. We characterize the screen using a focused tool compound kinase inhibitor library. We identify a series of compounds that induce different types of senescence, including a unique phenotype associated with irregularly shaped nuclei and the progressive accumulation of G1 tetraploidy in human diploid fibroblasts. Downstream analyses show that all of the compounds that induce tetraploid senescence inhibit Aurora kinase B (AURKB). AURKB is the catalytic component of the chromosome passenger complex, which is involved in correct chromosome alignment and segregation, the spindle assembly checkpoint, and cytokinesis. Although aberrant mitosis and senescence have been linked, a specific characterization of AURKB in the context of senescence is still required. This proof-of-principle study suggests that our protocol is capable of amplifying tetraploid senescence, which can be observed in only a small population of oncogenic RAS-induced senescence, and provides additional justification for AURKB as a cancer therapeutic target. The American Society for Cell Biology 2015-09-01 /pmc/articles/PMC4551313/ /pubmed/26133385 http://dx.doi.org/10.1091/mbc.E15-01-0003 Text en © 2015 Sadaie et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0). “ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society for Cell Biology. |
spellingShingle | Articles Sadaie, Mahito Dillon, Christian Narita, Masashi Young, Andrew R. J. Cairney, Claire J. Godwin, Lauren S. Torrance, Christopher J. Bennett, Dorothy C. Keith, W. Nicol Narita, Masashi Cell-based screen for altered nuclear phenotypes reveals senescence progression in polyploid cells after Aurora kinase B inhibition |
title | Cell-based screen for altered nuclear phenotypes reveals senescence progression in polyploid cells after Aurora kinase B inhibition |
title_full | Cell-based screen for altered nuclear phenotypes reveals senescence progression in polyploid cells after Aurora kinase B inhibition |
title_fullStr | Cell-based screen for altered nuclear phenotypes reveals senescence progression in polyploid cells after Aurora kinase B inhibition |
title_full_unstemmed | Cell-based screen for altered nuclear phenotypes reveals senescence progression in polyploid cells after Aurora kinase B inhibition |
title_short | Cell-based screen for altered nuclear phenotypes reveals senescence progression in polyploid cells after Aurora kinase B inhibition |
title_sort | cell-based screen for altered nuclear phenotypes reveals senescence progression in polyploid cells after aurora kinase b inhibition |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4551313/ https://www.ncbi.nlm.nih.gov/pubmed/26133385 http://dx.doi.org/10.1091/mbc.E15-01-0003 |
work_keys_str_mv | AT sadaiemahito cellbasedscreenforalterednuclearphenotypesrevealssenescenceprogressioninpolyploidcellsafteraurorakinasebinhibition AT dillonchristian cellbasedscreenforalterednuclearphenotypesrevealssenescenceprogressioninpolyploidcellsafteraurorakinasebinhibition AT naritamasashi cellbasedscreenforalterednuclearphenotypesrevealssenescenceprogressioninpolyploidcellsafteraurorakinasebinhibition AT youngandrewrj cellbasedscreenforalterednuclearphenotypesrevealssenescenceprogressioninpolyploidcellsafteraurorakinasebinhibition AT cairneyclairej cellbasedscreenforalterednuclearphenotypesrevealssenescenceprogressioninpolyploidcellsafteraurorakinasebinhibition AT godwinlaurens cellbasedscreenforalterednuclearphenotypesrevealssenescenceprogressioninpolyploidcellsafteraurorakinasebinhibition AT torrancechristopherj cellbasedscreenforalterednuclearphenotypesrevealssenescenceprogressioninpolyploidcellsafteraurorakinasebinhibition AT bennettdorothyc cellbasedscreenforalterednuclearphenotypesrevealssenescenceprogressioninpolyploidcellsafteraurorakinasebinhibition AT keithwnicol cellbasedscreenforalterednuclearphenotypesrevealssenescenceprogressioninpolyploidcellsafteraurorakinasebinhibition AT naritamasashi cellbasedscreenforalterednuclearphenotypesrevealssenescenceprogressioninpolyploidcellsafteraurorakinasebinhibition |