Cargando…

Inhibition of hypoxia inducible factor-1α downregulates the expression of epithelial to mesenchymal transition early marker proteins without undermining cell survival in hypoxic lens epithelial cells

PURPOSE: The purpose of this study was to identify potential therapeutic strategies to slow down or prevent the expression of early-onset epithelial to mesenchymal transition (EMT) marker proteins (fibronectin and alpha smooth muscle actin, α-SMA) without sacrificing the synthesis and accumulation o...

Descripción completa

Detalles Bibliográficos
Autores principales: Cammarata, Patrick R., Neelam, Sudha, Brooks, Morgan M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Vision 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4556159/
https://www.ncbi.nlm.nih.gov/pubmed/26392741
Descripción
Sumario:PURPOSE: The purpose of this study was to identify potential therapeutic strategies to slow down or prevent the expression of early-onset epithelial to mesenchymal transition (EMT) marker proteins (fibronectin and alpha smooth muscle actin, α-SMA) without sacrificing the synthesis and accumulation of the prosurvival protein vascular endothelial growth factor (VEGF) in cultured virally transformed human lens epithelial (HLE) cells. METHODS: HLE-B3 cells, maintained in a continuous hypoxic environment (1% oxygen), were treated with SB216763, a specific inhibitor of glycogen synthase kinase-3β (GSK-3β) catalytic activity. Western blot analysis was employed to detect the cytoplasmic and nuclear levels of β-catenin, as well as the total lysate content of fibronectin and α-SMA. Enzyme-linked immunosorbent assay (ELISA) was used to measure the levels of VEGF in cell culture medium. A hypoxia-inducible factor-1α (HIF-1α) translation inhibitor and an HIF-2α translation inhibitor were independently employed to evaluate the effect of hypoxia inducible factor inhibition on EMT marker protein and VEGF expression. XAV932 was used to assess the suppression of nuclear β-catenin and its downstream effect on EMT marker proteins and VEGF expression. RESULTS: SB216763-treated HLE-B3 cells caused marked inhibition of GSK-3β activity prompting a significant increase in the translocation of cytoplasmic β-catenin to the nucleus. The enhancement of nuclear β-catenin looked as if it positively correlated with a significant increase in the basal expression of VEGF as well as increased expression of fibronectin and α-SMA. In conjunction with SB216763, coadministration of an HIF-1α translation inhibitor, but not an HIF-2α translation inhibitor, markedly suppressed the expression of fibronectin and α-SMA without affecting VEGF levels. Treatment with XAV932 significantly reduced the level of nuclear β-catenin, but the levels of neither the EMT marker proteins nor VEGF were changed. CONCLUSIONS: Recently, we reported that nuclear β-catenin, but not HIF-2α, regulates the expression of fibronectin and α-SMA in atmospheric oxygen. In marked contrast, data from the hypoxic condition clearly establish that nuclear β-catenin plays little apparent role in the expression of EMT marker proteins. Instead, the loss of HIF-1α (but not HIF-2α) decreases the expression of the EMT marker proteins without sacrificing the levels of the prosurvival protein VEGF. These findings support the development of a potentially relevant therapeutic strategy to undermine the progression of normal cells to the mesenchymal phenotype in the naturally hypoxic lens without subverting cell viability.