Cargando…
Impaired osteogenesis in Menkes disease-derived induced pluripotent stem cells
INTRODUCTION: Bone abnormalities, one of the primary manifestations of Menkes disease (MD), include a weakened bone matrix and low mineral density. However, the molecular and cellular mechanisms underlying these bone defects are poorly understood. METHODS: We present in vitro modeling for impaired o...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4562349/ https://www.ncbi.nlm.nih.gov/pubmed/26347346 http://dx.doi.org/10.1186/s13287-015-0147-5 |
Sumario: | INTRODUCTION: Bone abnormalities, one of the primary manifestations of Menkes disease (MD), include a weakened bone matrix and low mineral density. However, the molecular and cellular mechanisms underlying these bone defects are poorly understood. METHODS: We present in vitro modeling for impaired osteogenesis in MD using human induced pluripotent stem cells (iPSCs) with a mutated ATP7A gene. MD-iPSC lines were generated from two patients harboring different mutations. RESULTS: The MD-iPSCs showed a remarkable retardation in CD105 expression with morphological anomalies during development to mesenchymal stem cells (MSCs) compared with wild-type (WT)-iPSCs. Interestingly, although prolonged culture enhanced CD105 expression, mature MD-MSCs presented with low alkaline phosphatase activity, reduced calcium deposition in the extracellular matrix, and downregulated osteoblast-specific genes during osteoblast differentiation in vitro. Knockdown of ATP7A also impaired osteogenesis in WT-MSCs. Lysyl oxidase activity was also decreased in MD-MSCs during osteoblast differentiation. CONCLUSIONS: Our findings indicate that ATP7A dysfunction contributes to retardation in MSC development and impairs osteogenesis in MD. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13287-015-0147-5) contains supplementary material, which is available to authorized users. |
---|