Cargando…

Cardiac LXRα protects against pathological cardiac hypertrophy and dysfunction by enhancing glucose uptake and utilization

Pathological cardiac hypertrophy is characterized by a shift in metabolic substrate utilization from fatty acids to glucose, but the molecular events underlying the metabolic remodeling remain poorly understood. Here, we investigated the role of liver X receptors (LXRs), which are key regulators of...

Descripción completa

Detalles Bibliográficos
Autores principales: Cannon, Megan V, Silljé, Herman HW, Sijbesma, Jürgen WA, Vreeswijk-Baudoin, Inge, Ciapaite, Jolita, van der Sluis, Bart, van Deursen, Jan, Silva, Gustavo JJ, de Windt, Leon J, Gustafsson, Jan-Åke, van der Harst, Pim, van Gilst, Wiek H, de Boer, Rudolf A
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Ltd 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568954/
https://www.ncbi.nlm.nih.gov/pubmed/26160456
http://dx.doi.org/10.15252/emmm.201404669
_version_ 1782389975881351168
author Cannon, Megan V
Silljé, Herman HW
Sijbesma, Jürgen WA
Vreeswijk-Baudoin, Inge
Ciapaite, Jolita
van der Sluis, Bart
van Deursen, Jan
Silva, Gustavo JJ
de Windt, Leon J
Gustafsson, Jan-Åke
van der Harst, Pim
van Gilst, Wiek H
de Boer, Rudolf A
author_facet Cannon, Megan V
Silljé, Herman HW
Sijbesma, Jürgen WA
Vreeswijk-Baudoin, Inge
Ciapaite, Jolita
van der Sluis, Bart
van Deursen, Jan
Silva, Gustavo JJ
de Windt, Leon J
Gustafsson, Jan-Åke
van der Harst, Pim
van Gilst, Wiek H
de Boer, Rudolf A
author_sort Cannon, Megan V
collection PubMed
description Pathological cardiac hypertrophy is characterized by a shift in metabolic substrate utilization from fatty acids to glucose, but the molecular events underlying the metabolic remodeling remain poorly understood. Here, we investigated the role of liver X receptors (LXRs), which are key regulators of glucose and lipid metabolism, in cardiac hypertrophic pathogenesis. Using a transgenic approach in mice, we show that overexpression of LXRα acts to protect the heart against hypertrophy, fibrosis, and dysfunction. Gene expression profiling studies revealed that genes regulating metabolic pathways were differentially expressed in hearts with elevated LXRα. Functionally, LXRα overexpression in isolated cardiomyocytes and murine hearts markedly enhanced the capacity for myocardial glucose uptake following hypertrophic stress. Conversely, this adaptive response was diminished in LXRα-deficient mice. Transcriptional changes induced by LXRα overexpression promoted energy-independent utilization of glucose via the hexosamine biosynthesis pathway, resulting in O-GlcNAc modification of GATA4 and Mef2c and the induction of cytoprotective natriuretic peptide expression. Our results identify LXRα as a key cardiac transcriptional regulator that helps orchestrate an adaptive metabolic response to chronic cardiac stress, and suggest that modulating LXRα may provide a unique opportunity for intervening in myocyte metabolism.
format Online
Article
Text
id pubmed-4568954
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher John Wiley & Sons, Ltd
record_format MEDLINE/PubMed
spelling pubmed-45689542015-09-17 Cardiac LXRα protects against pathological cardiac hypertrophy and dysfunction by enhancing glucose uptake and utilization Cannon, Megan V Silljé, Herman HW Sijbesma, Jürgen WA Vreeswijk-Baudoin, Inge Ciapaite, Jolita van der Sluis, Bart van Deursen, Jan Silva, Gustavo JJ de Windt, Leon J Gustafsson, Jan-Åke van der Harst, Pim van Gilst, Wiek H de Boer, Rudolf A EMBO Mol Med Research Articles Pathological cardiac hypertrophy is characterized by a shift in metabolic substrate utilization from fatty acids to glucose, but the molecular events underlying the metabolic remodeling remain poorly understood. Here, we investigated the role of liver X receptors (LXRs), which are key regulators of glucose and lipid metabolism, in cardiac hypertrophic pathogenesis. Using a transgenic approach in mice, we show that overexpression of LXRα acts to protect the heart against hypertrophy, fibrosis, and dysfunction. Gene expression profiling studies revealed that genes regulating metabolic pathways were differentially expressed in hearts with elevated LXRα. Functionally, LXRα overexpression in isolated cardiomyocytes and murine hearts markedly enhanced the capacity for myocardial glucose uptake following hypertrophic stress. Conversely, this adaptive response was diminished in LXRα-deficient mice. Transcriptional changes induced by LXRα overexpression promoted energy-independent utilization of glucose via the hexosamine biosynthesis pathway, resulting in O-GlcNAc modification of GATA4 and Mef2c and the induction of cytoprotective natriuretic peptide expression. Our results identify LXRα as a key cardiac transcriptional regulator that helps orchestrate an adaptive metabolic response to chronic cardiac stress, and suggest that modulating LXRα may provide a unique opportunity for intervening in myocyte metabolism. John Wiley & Sons, Ltd 2015-09 2015-07-14 /pmc/articles/PMC4568954/ /pubmed/26160456 http://dx.doi.org/10.15252/emmm.201404669 Text en © 2015 The Authors. Published under the terms of the CC BY 4.0 license http://creativecommons.org/licenses/by/4.0/ This is an open access article under the terms of the Creative Commons Attribution 4.0 License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Cannon, Megan V
Silljé, Herman HW
Sijbesma, Jürgen WA
Vreeswijk-Baudoin, Inge
Ciapaite, Jolita
van der Sluis, Bart
van Deursen, Jan
Silva, Gustavo JJ
de Windt, Leon J
Gustafsson, Jan-Åke
van der Harst, Pim
van Gilst, Wiek H
de Boer, Rudolf A
Cardiac LXRα protects against pathological cardiac hypertrophy and dysfunction by enhancing glucose uptake and utilization
title Cardiac LXRα protects against pathological cardiac hypertrophy and dysfunction by enhancing glucose uptake and utilization
title_full Cardiac LXRα protects against pathological cardiac hypertrophy and dysfunction by enhancing glucose uptake and utilization
title_fullStr Cardiac LXRα protects against pathological cardiac hypertrophy and dysfunction by enhancing glucose uptake and utilization
title_full_unstemmed Cardiac LXRα protects against pathological cardiac hypertrophy and dysfunction by enhancing glucose uptake and utilization
title_short Cardiac LXRα protects against pathological cardiac hypertrophy and dysfunction by enhancing glucose uptake and utilization
title_sort cardiac lxrα protects against pathological cardiac hypertrophy and dysfunction by enhancing glucose uptake and utilization
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568954/
https://www.ncbi.nlm.nih.gov/pubmed/26160456
http://dx.doi.org/10.15252/emmm.201404669
work_keys_str_mv AT cannonmeganv cardiaclxraprotectsagainstpathologicalcardiachypertrophyanddysfunctionbyenhancingglucoseuptakeandutilization
AT silljehermanhw cardiaclxraprotectsagainstpathologicalcardiachypertrophyanddysfunctionbyenhancingglucoseuptakeandutilization
AT sijbesmajurgenwa cardiaclxraprotectsagainstpathologicalcardiachypertrophyanddysfunctionbyenhancingglucoseuptakeandutilization
AT vreeswijkbaudoininge cardiaclxraprotectsagainstpathologicalcardiachypertrophyanddysfunctionbyenhancingglucoseuptakeandutilization
AT ciapaitejolita cardiaclxraprotectsagainstpathologicalcardiachypertrophyanddysfunctionbyenhancingglucoseuptakeandutilization
AT vandersluisbart cardiaclxraprotectsagainstpathologicalcardiachypertrophyanddysfunctionbyenhancingglucoseuptakeandutilization
AT vandeursenjan cardiaclxraprotectsagainstpathologicalcardiachypertrophyanddysfunctionbyenhancingglucoseuptakeandutilization
AT silvagustavojj cardiaclxraprotectsagainstpathologicalcardiachypertrophyanddysfunctionbyenhancingglucoseuptakeandutilization
AT dewindtleonj cardiaclxraprotectsagainstpathologicalcardiachypertrophyanddysfunctionbyenhancingglucoseuptakeandutilization
AT gustafssonjanake cardiaclxraprotectsagainstpathologicalcardiachypertrophyanddysfunctionbyenhancingglucoseuptakeandutilization
AT vanderharstpim cardiaclxraprotectsagainstpathologicalcardiachypertrophyanddysfunctionbyenhancingglucoseuptakeandutilization
AT vangilstwiekh cardiaclxraprotectsagainstpathologicalcardiachypertrophyanddysfunctionbyenhancingglucoseuptakeandutilization
AT deboerrudolfa cardiaclxraprotectsagainstpathologicalcardiachypertrophyanddysfunctionbyenhancingglucoseuptakeandutilization