Cargando…

ALS-Linked P56S-VAPB Mutation Impairs the Formation of Multinuclear Myotube in C2C12 Cells

Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disorder that affects upper and lower motor neurons. Since motor neurons target skeletal muscles, the maintenance system of muscles is disturbed in ALS; however, the mechanism by which this occurs is unknown. In the prese...

Descripción completa

Detalles Bibliográficos
Autores principales: Tokutake, Yukako, Yamada, Keita, Ohata, Masaki, Obayashi, Yoshihito, Tsuchiya, Megumi, Yonekura, Shinichi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4581263/
https://www.ncbi.nlm.nih.gov/pubmed/26266407
http://dx.doi.org/10.3390/ijms160818628
Descripción
Sumario:Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disorder that affects upper and lower motor neurons. Since motor neurons target skeletal muscles, the maintenance system of muscles is disturbed in ALS; however, the mechanism by which this occurs is unknown. In the present study, we investigated the effects of ALS-associated P56S-vesicle-associated membrane protein-associated protein B (VAPB) (P56S-VAPB) on the IRE1-XBP1 pathway, which is involved in the unfolded protein response (UPR) of the mouse myoblast cell line (C2C12 cells). Experiments with C2C12 cells transfected with wild-type wt-VAPB and P56S-VAPB expression vectors showed reduced myotube formation and aberrant myonuclear position in cells expressing P56S-VAPB. Activity of the IRE1-XBP1 pathway in the cells visualized with the ERAI system revealed that the pathway was disrupted in cells expressing P56S-VAPB, whereas the IRE1-XBP1 pathway activity was enhanced in the differentiation process of normal C2C12 cells. These results suggest that disruption of the IRE1-XBP1 pathway is a cause for the reduced myotube formation in P56S-VAPB-expressing cells. The expression level of the VAPB protein has been reported to be reduced in the neurons of patients with ALS. Therefore, it is expected that the IRE1-XBP1 pathway is also impaired in muscle tissues of patients with ALS, which causes a disturbance in the muscle maintenance system.