Cargando…

Inhibition of Mitochondrial Complex I Leads to Decreased Motility and Membrane Integrity Related to Increased Hydrogen Peroxide and Reduced ATP Production, while the Inhibition of Glycolysis Has Less Impact on Sperm Motility

Mitochondria have been proposed as the major source of reactive oxygen species in somatic cells and human spermatozoa. However, no data regarding the role of mitochondrial ROS production in stallion spermatozoa are available. To shed light on the role of the mitochondrial electron transport chain in...

Descripción completa

Detalles Bibliográficos
Autores principales: Plaza Davila, María, Martin Muñoz, Patricia, Tapia, Jose A., Ortega Ferrusola, Cristina, Balao da Silva C, Carolina, Peña, Fernando J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4583303/
https://www.ncbi.nlm.nih.gov/pubmed/26407142
http://dx.doi.org/10.1371/journal.pone.0138777
_version_ 1782391829662007296
author Plaza Davila, María
Martin Muñoz, Patricia
Tapia, Jose A.
Ortega Ferrusola, Cristina
Balao da Silva C, Carolina
Peña, Fernando J.
author_facet Plaza Davila, María
Martin Muñoz, Patricia
Tapia, Jose A.
Ortega Ferrusola, Cristina
Balao da Silva C, Carolina
Peña, Fernando J.
author_sort Plaza Davila, María
collection PubMed
description Mitochondria have been proposed as the major source of reactive oxygen species in somatic cells and human spermatozoa. However, no data regarding the role of mitochondrial ROS production in stallion spermatozoa are available. To shed light on the role of the mitochondrial electron transport chain in the origin of oxidative stress in stallion spermatozoa, specific inhibitors of complex I (rotenone) and III (antimycin-A) were used. Ejaculates from seven Andalusian stallions were collected and incubated in BWW media at 37°C in the presence of rotenone, antimycin-A or control vehicle. Incubation in the presence of these inhibitors reduced sperm motility and velocity (CASA analysis) (p<0.01), but the effect was more evident in the presence of rotenone (a complex I inhibitor). These inhibitors also decreased ATP content. The inhibition of complexes I and III decreased the production of reactive oxygen species (p<0.01) as assessed by flow cytometry after staining with CellRox deep red. This observation suggests that the CellRox probe mainly identifies superoxide and that superoxide production may reflect intense mitochondrial activity rather than oxidative stress. The inhibition of complex I resulted in increased hydrogen peroxide production (p<0.01). The inhibition of glycolysis resulted in reduced sperm velocities (p<0.01) without an effect on the percentage of total motile sperm. Weak and moderate (but statistically significant) positive correlations were observed between sperm motility, velocity and membrane integrity and the production of reactive oxygen species. These results indicate that stallion sperm rely heavily on oxidative phosphorylation (OXPHOS) for the production of ATP for motility but also require glycolysis to maintain high velocities. These data also indicate that increased hydrogen peroxide originating in the mitochondria is a mechanism involved in stallion sperm senescence.
format Online
Article
Text
id pubmed-4583303
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-45833032015-10-02 Inhibition of Mitochondrial Complex I Leads to Decreased Motility and Membrane Integrity Related to Increased Hydrogen Peroxide and Reduced ATP Production, while the Inhibition of Glycolysis Has Less Impact on Sperm Motility Plaza Davila, María Martin Muñoz, Patricia Tapia, Jose A. Ortega Ferrusola, Cristina Balao da Silva C, Carolina Peña, Fernando J. PLoS One Research Article Mitochondria have been proposed as the major source of reactive oxygen species in somatic cells and human spermatozoa. However, no data regarding the role of mitochondrial ROS production in stallion spermatozoa are available. To shed light on the role of the mitochondrial electron transport chain in the origin of oxidative stress in stallion spermatozoa, specific inhibitors of complex I (rotenone) and III (antimycin-A) were used. Ejaculates from seven Andalusian stallions were collected and incubated in BWW media at 37°C in the presence of rotenone, antimycin-A or control vehicle. Incubation in the presence of these inhibitors reduced sperm motility and velocity (CASA analysis) (p<0.01), but the effect was more evident in the presence of rotenone (a complex I inhibitor). These inhibitors also decreased ATP content. The inhibition of complexes I and III decreased the production of reactive oxygen species (p<0.01) as assessed by flow cytometry after staining with CellRox deep red. This observation suggests that the CellRox probe mainly identifies superoxide and that superoxide production may reflect intense mitochondrial activity rather than oxidative stress. The inhibition of complex I resulted in increased hydrogen peroxide production (p<0.01). The inhibition of glycolysis resulted in reduced sperm velocities (p<0.01) without an effect on the percentage of total motile sperm. Weak and moderate (but statistically significant) positive correlations were observed between sperm motility, velocity and membrane integrity and the production of reactive oxygen species. These results indicate that stallion sperm rely heavily on oxidative phosphorylation (OXPHOS) for the production of ATP for motility but also require glycolysis to maintain high velocities. These data also indicate that increased hydrogen peroxide originating in the mitochondria is a mechanism involved in stallion sperm senescence. Public Library of Science 2015-09-25 /pmc/articles/PMC4583303/ /pubmed/26407142 http://dx.doi.org/10.1371/journal.pone.0138777 Text en © 2015 Plaza Davila et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Plaza Davila, María
Martin Muñoz, Patricia
Tapia, Jose A.
Ortega Ferrusola, Cristina
Balao da Silva C, Carolina
Peña, Fernando J.
Inhibition of Mitochondrial Complex I Leads to Decreased Motility and Membrane Integrity Related to Increased Hydrogen Peroxide and Reduced ATP Production, while the Inhibition of Glycolysis Has Less Impact on Sperm Motility
title Inhibition of Mitochondrial Complex I Leads to Decreased Motility and Membrane Integrity Related to Increased Hydrogen Peroxide and Reduced ATP Production, while the Inhibition of Glycolysis Has Less Impact on Sperm Motility
title_full Inhibition of Mitochondrial Complex I Leads to Decreased Motility and Membrane Integrity Related to Increased Hydrogen Peroxide and Reduced ATP Production, while the Inhibition of Glycolysis Has Less Impact on Sperm Motility
title_fullStr Inhibition of Mitochondrial Complex I Leads to Decreased Motility and Membrane Integrity Related to Increased Hydrogen Peroxide and Reduced ATP Production, while the Inhibition of Glycolysis Has Less Impact on Sperm Motility
title_full_unstemmed Inhibition of Mitochondrial Complex I Leads to Decreased Motility and Membrane Integrity Related to Increased Hydrogen Peroxide and Reduced ATP Production, while the Inhibition of Glycolysis Has Less Impact on Sperm Motility
title_short Inhibition of Mitochondrial Complex I Leads to Decreased Motility and Membrane Integrity Related to Increased Hydrogen Peroxide and Reduced ATP Production, while the Inhibition of Glycolysis Has Less Impact on Sperm Motility
title_sort inhibition of mitochondrial complex i leads to decreased motility and membrane integrity related to increased hydrogen peroxide and reduced atp production, while the inhibition of glycolysis has less impact on sperm motility
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4583303/
https://www.ncbi.nlm.nih.gov/pubmed/26407142
http://dx.doi.org/10.1371/journal.pone.0138777
work_keys_str_mv AT plazadavilamaria inhibitionofmitochondrialcomplexileadstodecreasedmotilityandmembraneintegrityrelatedtoincreasedhydrogenperoxideandreducedatpproductionwhiletheinhibitionofglycolysishaslessimpactonspermmotility
AT martinmunozpatricia inhibitionofmitochondrialcomplexileadstodecreasedmotilityandmembraneintegrityrelatedtoincreasedhydrogenperoxideandreducedatpproductionwhiletheinhibitionofglycolysishaslessimpactonspermmotility
AT tapiajosea inhibitionofmitochondrialcomplexileadstodecreasedmotilityandmembraneintegrityrelatedtoincreasedhydrogenperoxideandreducedatpproductionwhiletheinhibitionofglycolysishaslessimpactonspermmotility
AT ortegaferrusolacristina inhibitionofmitochondrialcomplexileadstodecreasedmotilityandmembraneintegrityrelatedtoincreasedhydrogenperoxideandreducedatpproductionwhiletheinhibitionofglycolysishaslessimpactonspermmotility
AT balaodasilvaccarolina inhibitionofmitochondrialcomplexileadstodecreasedmotilityandmembraneintegrityrelatedtoincreasedhydrogenperoxideandreducedatpproductionwhiletheinhibitionofglycolysishaslessimpactonspermmotility
AT penafernandoj inhibitionofmitochondrialcomplexileadstodecreasedmotilityandmembraneintegrityrelatedtoincreasedhydrogenperoxideandreducedatpproductionwhiletheinhibitionofglycolysishaslessimpactonspermmotility