Cargando…
Presenting native-like HIV-1 envelope trimers on ferritin nanoparticles improves their immunogenicity
BACKGROUND: Presenting vaccine antigens in particulate form can improve their immunogenicity by enhancing B cell activation. FINDINGS: We describe ferritin-based protein nanoparticles that display multiple copies of native-like HIV-1 envelope glycoprotein trimers (BG505 SOSIP.664). Trimer-bearing na...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4583754/ https://www.ncbi.nlm.nih.gov/pubmed/26410741 http://dx.doi.org/10.1186/s12977-015-0210-4 |
Sumario: | BACKGROUND: Presenting vaccine antigens in particulate form can improve their immunogenicity by enhancing B cell activation. FINDINGS: We describe ferritin-based protein nanoparticles that display multiple copies of native-like HIV-1 envelope glycoprotein trimers (BG505 SOSIP.664). Trimer-bearing nanoparticles were significantly more immunogenic than trimers in both mice and rabbits. Furthermore, rabbits immunized with the trimer-bearing nanoparticles induced significantly higher neutralizing antibody responses against most tier 1A viruses, and higher responses (but not significantly), to several tier 1B viruses and the autologous tier 2 virus than when the same trimers were delivered as soluble proteins. CONCLUSIONS: This or other nanoparticle designs may be practical ways to improve the immunogenicity of envelope glycoprotein trimers. |
---|