Cargando…
PKA Inhibitor H89 (N-[2-p-bromocinnamylamino-ethyl]-5-isoquinolinesulfonamide) Attenuates Synaptic Dysfunction and Neuronal Cell Death following Ischemic Injury
The cyclic AMP-dependent protein kinase (PKA), which activates prosurvival signaling proteins, has been implicated in the expression of long-term potentiation and hippocampal long-term memory. It has come to light that H89 commonly known as the PKA inhibitor have diverse roles in the nervous system...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4584069/ https://www.ncbi.nlm.nih.gov/pubmed/26448879 http://dx.doi.org/10.1155/2015/374520 |
_version_ | 1782391934608736256 |
---|---|
author | Song, Juhyun Cheon, So Yeong Lee, Won Taek Park, Kyung Ah Lee, Jong Eun |
author_facet | Song, Juhyun Cheon, So Yeong Lee, Won Taek Park, Kyung Ah Lee, Jong Eun |
author_sort | Song, Juhyun |
collection | PubMed |
description | The cyclic AMP-dependent protein kinase (PKA), which activates prosurvival signaling proteins, has been implicated in the expression of long-term potentiation and hippocampal long-term memory. It has come to light that H89 commonly known as the PKA inhibitor have diverse roles in the nervous system that are unrelated to its role as a PKA inhibitor. We have investigated the role of H89 in ischemic and reperfusion injury. First, we examined the expression of postsynaptic density protein 95 (PSD95), microtubule-associated protein 2 (MAP2), and synaptophysin in mouse brain after middle cerebral artery occlusion injury. Next, we examined the role of H89 pretreatment on the expression of brain-derived neurotrophic factor (BDNF), PSD95, MAP2, and the apoptosis regulators Bcl2 and cleaved caspase-3 in cultured neuroblastoma cells exposed to hypoxia and reperfusion injury. In addition, we investigated the alteration of AKT activation in H89 pretreated neuroblastoma cells under hypoxia and reperfusion injury. The data suggest that H89 may contribute to brain recovery after ischemic stroke by regulating neuronal death and proteins related to synaptic plasticity. |
format | Online Article Text |
id | pubmed-4584069 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-45840692015-10-07 PKA Inhibitor H89 (N-[2-p-bromocinnamylamino-ethyl]-5-isoquinolinesulfonamide) Attenuates Synaptic Dysfunction and Neuronal Cell Death following Ischemic Injury Song, Juhyun Cheon, So Yeong Lee, Won Taek Park, Kyung Ah Lee, Jong Eun Neural Plast Research Article The cyclic AMP-dependent protein kinase (PKA), which activates prosurvival signaling proteins, has been implicated in the expression of long-term potentiation and hippocampal long-term memory. It has come to light that H89 commonly known as the PKA inhibitor have diverse roles in the nervous system that are unrelated to its role as a PKA inhibitor. We have investigated the role of H89 in ischemic and reperfusion injury. First, we examined the expression of postsynaptic density protein 95 (PSD95), microtubule-associated protein 2 (MAP2), and synaptophysin in mouse brain after middle cerebral artery occlusion injury. Next, we examined the role of H89 pretreatment on the expression of brain-derived neurotrophic factor (BDNF), PSD95, MAP2, and the apoptosis regulators Bcl2 and cleaved caspase-3 in cultured neuroblastoma cells exposed to hypoxia and reperfusion injury. In addition, we investigated the alteration of AKT activation in H89 pretreated neuroblastoma cells under hypoxia and reperfusion injury. The data suggest that H89 may contribute to brain recovery after ischemic stroke by regulating neuronal death and proteins related to synaptic plasticity. Hindawi Publishing Corporation 2015 2015-09-13 /pmc/articles/PMC4584069/ /pubmed/26448879 http://dx.doi.org/10.1155/2015/374520 Text en Copyright © 2015 Juhyun Song et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Song, Juhyun Cheon, So Yeong Lee, Won Taek Park, Kyung Ah Lee, Jong Eun PKA Inhibitor H89 (N-[2-p-bromocinnamylamino-ethyl]-5-isoquinolinesulfonamide) Attenuates Synaptic Dysfunction and Neuronal Cell Death following Ischemic Injury |
title | PKA Inhibitor H89 (N-[2-p-bromocinnamylamino-ethyl]-5-isoquinolinesulfonamide) Attenuates Synaptic Dysfunction and Neuronal Cell Death following Ischemic Injury |
title_full | PKA Inhibitor H89 (N-[2-p-bromocinnamylamino-ethyl]-5-isoquinolinesulfonamide) Attenuates Synaptic Dysfunction and Neuronal Cell Death following Ischemic Injury |
title_fullStr | PKA Inhibitor H89 (N-[2-p-bromocinnamylamino-ethyl]-5-isoquinolinesulfonamide) Attenuates Synaptic Dysfunction and Neuronal Cell Death following Ischemic Injury |
title_full_unstemmed | PKA Inhibitor H89 (N-[2-p-bromocinnamylamino-ethyl]-5-isoquinolinesulfonamide) Attenuates Synaptic Dysfunction and Neuronal Cell Death following Ischemic Injury |
title_short | PKA Inhibitor H89 (N-[2-p-bromocinnamylamino-ethyl]-5-isoquinolinesulfonamide) Attenuates Synaptic Dysfunction and Neuronal Cell Death following Ischemic Injury |
title_sort | pka inhibitor h89 (n-[2-p-bromocinnamylamino-ethyl]-5-isoquinolinesulfonamide) attenuates synaptic dysfunction and neuronal cell death following ischemic injury |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4584069/ https://www.ncbi.nlm.nih.gov/pubmed/26448879 http://dx.doi.org/10.1155/2015/374520 |
work_keys_str_mv | AT songjuhyun pkainhibitorh89n2pbromocinnamylaminoethyl5isoquinolinesulfonamideattenuatessynapticdysfunctionandneuronalcelldeathfollowingischemicinjury AT cheonsoyeong pkainhibitorh89n2pbromocinnamylaminoethyl5isoquinolinesulfonamideattenuatessynapticdysfunctionandneuronalcelldeathfollowingischemicinjury AT leewontaek pkainhibitorh89n2pbromocinnamylaminoethyl5isoquinolinesulfonamideattenuatessynapticdysfunctionandneuronalcelldeathfollowingischemicinjury AT parkkyungah pkainhibitorh89n2pbromocinnamylaminoethyl5isoquinolinesulfonamideattenuatessynapticdysfunctionandneuronalcelldeathfollowingischemicinjury AT leejongeun pkainhibitorh89n2pbromocinnamylaminoethyl5isoquinolinesulfonamideattenuatessynapticdysfunctionandneuronalcelldeathfollowingischemicinjury |