Cargando…

An Alternative Method to Facilitate cDNA Cloning for Expression Studies in Mammalian Cells by Introducing Positive Blue White Selection in Vaccinia Topoisomerase I-Mediated Recombination

One of the most basic techniques in biomedical research is cDNA cloning for expression studies in mammalian cells. Vaccinia topoisomerase I-mediated cloning (TOPO cloning by Invitrogen) allows fast and efficient recombination of PCR-amplified DNAs. Among TOPO vectors, a pcDNA3.1 directional cloning...

Descripción completa

Detalles Bibliográficos
Autor principal: Udo, Hiroshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4589362/
https://www.ncbi.nlm.nih.gov/pubmed/26422141
http://dx.doi.org/10.1371/journal.pone.0139349
Descripción
Sumario:One of the most basic techniques in biomedical research is cDNA cloning for expression studies in mammalian cells. Vaccinia topoisomerase I-mediated cloning (TOPO cloning by Invitrogen) allows fast and efficient recombination of PCR-amplified DNAs. Among TOPO vectors, a pcDNA3.1 directional cloning vector is particularly convenient, since it can be used for expression analysis immediately after cloning. However, I found that the cloning efficiency was reduced when RT-PCR products were used as inserts (about one-quarter). Since TOPO vectors accept any PCR products, contaminating fragments in the insert DNA create negative clones. Therefore, I designed a new mammalian expression vector enabling positive blue white selection in Vaccinia topoisomerase I–mediated cloning. The method utilized a short nontoxic LacZα peptide as a linker for GFP fusion. When cDNAs were properly inserted into the vector, minimal expression of the fusion proteins in E. coli (harboring lacZΔM15) resulted in formation of blue colonies on X-gal plates. This method improved both cloning efficiency (75%) and directional cloning (99%) by distinguishing some of the negative clones having non-cording sequences, since these inserts often disturbed translation of lacZα. Recombinant plasmids were directly applied to expression studies using GFP as a reporter. Utilization of the P2A peptide allowed for separate expression of GFP. In addition, the preparation of Vaccinia topoisomerase I-linked vectors was streamlined, which consisted of successive enzymatic reactions with a single precipitation step, completing in 3 hr. The arrangement of unique restriction sites enabled further modification of vector components for specific applications. This system provides an alternative method for cDNA cloning and expression in mammalian cells.