Cargando…

Quantifying the barrier lowering of ZnO Schottky nanodevices under UV light

In this study we measured the degrees to which the Schottky barrier heights (SBHs) are lowered in ZnO nanowire (NW) devices under illumination with UV light. We measured the I–V characteristics of ZnO nanowire devices to confirm that ZnO is an n-type semiconductor and that the on/off ratio is approx...

Descripción completa

Detalles Bibliográficos
Autores principales: Lu, Ming-Yen, Lu, Ming-Pei, You, Shuen-Jium, Chen, Chieh-Wei, Wang, Ying-Jhe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4601028/
https://www.ncbi.nlm.nih.gov/pubmed/26456370
http://dx.doi.org/10.1038/srep15123
Descripción
Sumario:In this study we measured the degrees to which the Schottky barrier heights (SBHs) are lowered in ZnO nanowire (NW) devices under illumination with UV light. We measured the I–V characteristics of ZnO nanowire devices to confirm that ZnO is an n-type semiconductor and that the on/off ratio is approximately 10(4). From temperature-dependent I–V measurements we obtained a SBH of 0.661 eV for a ZnO NW Schottky device in the dark. The photosensitivity of Schottky devices under UV illumination at a power density of 3 μW/cm(2) was 9186%. Variations in the SBH account for the superior characteristics of n-type Schottky devices under illumination with UV light. The SBH variations were due to the coupled mechanism of adsorption and desorption of O(2) and the increase in the carrier density. Furthermore, through temperature-dependent I–V measurements, we determined the SBHs in the dark and under illumination with UV light at power densities of 0.5, 1, 2, and 3 μW/cm(2) to be 0.661, 0.216, 0.178, 0.125, and 0.068 eV, respectively. These findings should be applicable in the design of highly sensitive nanoscale optoelectronic devices.