Cargando…
Flux balance analysis predicts essential genes in clear cell renal cell carcinoma metabolism
Flux balance analysis is the only modelling approach that is capable of producing genome-wide predictions of gene essentiality that may aid to unveil metabolic liabilities in cancer. Nevertheless, a systemic validation of gene essentiality predictions by flux balance analysis is currently missing. H...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4603759/ https://www.ncbi.nlm.nih.gov/pubmed/26040780 http://dx.doi.org/10.1038/srep10738 |
_version_ | 1782394951413268480 |
---|---|
author | Gatto, Francesco Miess, Heike Schulze, Almut Nielsen, Jens |
author_facet | Gatto, Francesco Miess, Heike Schulze, Almut Nielsen, Jens |
author_sort | Gatto, Francesco |
collection | PubMed |
description | Flux balance analysis is the only modelling approach that is capable of producing genome-wide predictions of gene essentiality that may aid to unveil metabolic liabilities in cancer. Nevertheless, a systemic validation of gene essentiality predictions by flux balance analysis is currently missing. Here, we critically evaluated the accuracy of flux balance analysis in two cancer types, clear cell renal cell carcinoma (ccRCC) and prostate adenocarcinoma, by comparison with large-scale experiments of gene essentiality in vitro. We found that in ccRCC, but not in prostate adenocarcinoma, flux balance analysis could predict essential metabolic genes beyond random expectation. Five of the identified metabolic genes, AGPAT6, GALT, GCLC, GSS, and RRM2B, were predicted to be dispensable in normal cell metabolism. Hence, targeting these genes may selectively prevent ccRCC growth. Based on our analysis, we discuss the benefits and limitations of flux balance analysis for gene essentiality predictions in cancer metabolism, and its use for exposing metabolic liabilities in ccRCC, whose emergent metabolic network enforces outstanding anabolic requirements for cellular proliferation. |
format | Online Article Text |
id | pubmed-4603759 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-46037592015-10-23 Flux balance analysis predicts essential genes in clear cell renal cell carcinoma metabolism Gatto, Francesco Miess, Heike Schulze, Almut Nielsen, Jens Sci Rep Article Flux balance analysis is the only modelling approach that is capable of producing genome-wide predictions of gene essentiality that may aid to unveil metabolic liabilities in cancer. Nevertheless, a systemic validation of gene essentiality predictions by flux balance analysis is currently missing. Here, we critically evaluated the accuracy of flux balance analysis in two cancer types, clear cell renal cell carcinoma (ccRCC) and prostate adenocarcinoma, by comparison with large-scale experiments of gene essentiality in vitro. We found that in ccRCC, but not in prostate adenocarcinoma, flux balance analysis could predict essential metabolic genes beyond random expectation. Five of the identified metabolic genes, AGPAT6, GALT, GCLC, GSS, and RRM2B, were predicted to be dispensable in normal cell metabolism. Hence, targeting these genes may selectively prevent ccRCC growth. Based on our analysis, we discuss the benefits and limitations of flux balance analysis for gene essentiality predictions in cancer metabolism, and its use for exposing metabolic liabilities in ccRCC, whose emergent metabolic network enforces outstanding anabolic requirements for cellular proliferation. Nature Publishing Group 2015-06-04 /pmc/articles/PMC4603759/ /pubmed/26040780 http://dx.doi.org/10.1038/srep10738 Text en Copyright © 2015, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Gatto, Francesco Miess, Heike Schulze, Almut Nielsen, Jens Flux balance analysis predicts essential genes in clear cell renal cell carcinoma metabolism |
title | Flux balance analysis predicts essential genes in clear cell renal cell carcinoma metabolism |
title_full | Flux balance analysis predicts essential genes in clear cell renal cell carcinoma metabolism |
title_fullStr | Flux balance analysis predicts essential genes in clear cell renal cell carcinoma metabolism |
title_full_unstemmed | Flux balance analysis predicts essential genes in clear cell renal cell carcinoma metabolism |
title_short | Flux balance analysis predicts essential genes in clear cell renal cell carcinoma metabolism |
title_sort | flux balance analysis predicts essential genes in clear cell renal cell carcinoma metabolism |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4603759/ https://www.ncbi.nlm.nih.gov/pubmed/26040780 http://dx.doi.org/10.1038/srep10738 |
work_keys_str_mv | AT gattofrancesco fluxbalanceanalysispredictsessentialgenesinclearcellrenalcellcarcinomametabolism AT miessheike fluxbalanceanalysispredictsessentialgenesinclearcellrenalcellcarcinomametabolism AT schulzealmut fluxbalanceanalysispredictsessentialgenesinclearcellrenalcellcarcinomametabolism AT nielsenjens fluxbalanceanalysispredictsessentialgenesinclearcellrenalcellcarcinomametabolism |