Cargando…

Comprehensive prediction of drug-protein interactions and side effects for the human proteome

Identifying unexpected drug-protein interactions is crucial for drug repurposing. We develop a comprehensive proteome scale approach that predicts human protein targets and side effects of drugs. For drug-protein interaction prediction, FINDSITE(comb), whose average precision is ~30% and recall ~27%...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Hongyi, Gao, Mu, Skolnick, Jeffrey
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4603786/
https://www.ncbi.nlm.nih.gov/pubmed/26057345
http://dx.doi.org/10.1038/srep11090
Descripción
Sumario:Identifying unexpected drug-protein interactions is crucial for drug repurposing. We develop a comprehensive proteome scale approach that predicts human protein targets and side effects of drugs. For drug-protein interaction prediction, FINDSITE(comb), whose average precision is ~30% and recall ~27%, is employed. For side effect prediction, a new method is developed with a precision of ~57% and a recall of ~24%. Our predictions show that drugs are quite promiscuous, with the average (median) number of human targets per drug of 329 (38), while a given protein interacts with 57 drugs. The result implies that drug side effects are inevitable and existing drugs may be useful for repurposing, with only ~1,000 human proteins likely causing serious side effects. A killing index derived from serious side effects has a strong correlation with FDA approved drugs being withdrawn. Therefore, it provides a pre-filter for new drug development. The methodology is free to the academic community on the DR. PRODIS (DRugome, PROteome, and DISeasome) webserver at http://cssb.biology.gatech.edu/dr.prodis/. DR. PRODIS provides protein targets of drugs, drugs for a given protein target, associated diseases and side effects of drugs, as well as an interface for the virtual target screening of new compounds.