Cargando…
Comprehensive prediction of drug-protein interactions and side effects for the human proteome
Identifying unexpected drug-protein interactions is crucial for drug repurposing. We develop a comprehensive proteome scale approach that predicts human protein targets and side effects of drugs. For drug-protein interaction prediction, FINDSITE(comb), whose average precision is ~30% and recall ~27%...
Autores principales: | Zhou, Hongyi, Gao, Mu, Skolnick, Jeffrey |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4603786/ https://www.ncbi.nlm.nih.gov/pubmed/26057345 http://dx.doi.org/10.1038/srep11090 |
Ejemplares similares
-
ENTPRISE: An Algorithm for Predicting Human Disease-Associated Amino Acid Substitutions from Sequence Entropy and Predicted Protein Structures
por: Zhou, Hongyi, et al.
Publicado: (2016) -
DESTINI: A deep-learning approach to contact-driven protein structure prediction
por: Gao, Mu, et al.
Publicado: (2019) -
From Nonspecific DNA–Protein Encounter Complexes to the
Prediction of DNA–Protein Interactions
por: Gao, Mu, et al.
Publicado: (2009) -
ENTPRISE-X: Predicting disease-associated frameshift and nonsense mutations
por: Zhou, Hongyi, et al.
Publicado: (2018) -
How special is the biochemical function of native proteins?
por: Skolnick, Jeffrey, et al.
Publicado: (2016)