Cargando…

KCC2 expression supersedes NKCC1 in mature fiber cells in mouse and rabbit lenses

PURPOSE: Na-K-Cl cotransporter 1 (NKCC1) and K-Cl cotransporter 2 (KCC2) have fundamental roles in neuron differentiation that are integrated with gamma-aminobutyric acid (GABA) and glutamate receptors, GABA synthesized by GAD25/65/67 encoded by GAD1/GAD2 genes, and GABA transporters (GATs). Cells i...

Descripción completa

Detalles Bibliográficos
Autores principales: Frederikse, Peter H., Kasinathan, Chinnaswamy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Vision 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4605749/
https://www.ncbi.nlm.nih.gov/pubmed/26539026
_version_ 1782395254398255104
author Frederikse, Peter H.
Kasinathan, Chinnaswamy
author_facet Frederikse, Peter H.
Kasinathan, Chinnaswamy
author_sort Frederikse, Peter H.
collection PubMed
description PURPOSE: Na-K-Cl cotransporter 1 (NKCC1) and K-Cl cotransporter 2 (KCC2) have fundamental roles in neuron differentiation that are integrated with gamma-aminobutyric acid (GABA) and glutamate receptors, GABA synthesized by GAD25/65/67 encoded by GAD1/GAD2 genes, and GABA transporters (GATs). Cells in the eye lens express at least 13 GABA receptor subunits, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl D-aspartate (NMDA) glutamate receptors, GAD1/GAD2, GAT1–4 and vGAT, and NKCC1. NKCC1:KCC2 ratios determine the switch in GABA actions from trophic/growth promoting early in development to their classic inhibitory roles in adult neurons. Lens epithelial cells cover the anterior surface and differentiate to elongated fiber cells in the lens interior with comparable morphology and sub-cellular structures as neurons. NKCC1 is expressed before KCC2 in neuron development and increases cell chloride, which stimulates differentiation and process formation. Subsequently, KCC2 increases and extrudes cell chloride linked with maturation. KCC2 has an additional structural moonlighting role interacting with F-actin scaffolding in dendritic spine morphogenesis. We examined KCC2 versus NKCC1 spatial expression in relation to fiber cell developmental status within the lens. METHODS: Immunofluorescence and immunoblots were used to detect expression in mouse and rabbit lenses. RESULTS: NKCC1 was restricted to peripheral elongating lens fiber cells in young adult mouse and rabbit lenses. Lens KCC2 expression included the major KCC2b neuronal isoform and was detected in interior fiber cells with decreased NKCC1 expression and localized at the membranes. Lens expression of RE-1 silencing transcription factor (REST) regulated KCC2 is consistent with GAD1 and GAD2, several GABA and glutamate receptor subunits, miR-124, and other REST-regulated genes expressed in lenses. CONCLUSIONS: NKCC1 in peripheral elongating fiber cells is superseded by KCC2 expression in interior mature fiber cells that also express >20 additional integral GABA biology genes, AMPA/NMDA glutamate receptors, and an array of accessory proteins that together underlie morphogenesis in neurons. The present findings provide further evidence that this fundamental neuronal regulation is extensively conserved in lens and identify additional parallels in the morphogenetic programs that underlie lens fiber cell and neuronal differentiation and contribute to the development of visual acuity.
format Online
Article
Text
id pubmed-4605749
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Molecular Vision
record_format MEDLINE/PubMed
spelling pubmed-46057492015-11-04 KCC2 expression supersedes NKCC1 in mature fiber cells in mouse and rabbit lenses Frederikse, Peter H. Kasinathan, Chinnaswamy Mol Vis Research Article PURPOSE: Na-K-Cl cotransporter 1 (NKCC1) and K-Cl cotransporter 2 (KCC2) have fundamental roles in neuron differentiation that are integrated with gamma-aminobutyric acid (GABA) and glutamate receptors, GABA synthesized by GAD25/65/67 encoded by GAD1/GAD2 genes, and GABA transporters (GATs). Cells in the eye lens express at least 13 GABA receptor subunits, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl D-aspartate (NMDA) glutamate receptors, GAD1/GAD2, GAT1–4 and vGAT, and NKCC1. NKCC1:KCC2 ratios determine the switch in GABA actions from trophic/growth promoting early in development to their classic inhibitory roles in adult neurons. Lens epithelial cells cover the anterior surface and differentiate to elongated fiber cells in the lens interior with comparable morphology and sub-cellular structures as neurons. NKCC1 is expressed before KCC2 in neuron development and increases cell chloride, which stimulates differentiation and process formation. Subsequently, KCC2 increases and extrudes cell chloride linked with maturation. KCC2 has an additional structural moonlighting role interacting with F-actin scaffolding in dendritic spine morphogenesis. We examined KCC2 versus NKCC1 spatial expression in relation to fiber cell developmental status within the lens. METHODS: Immunofluorescence and immunoblots were used to detect expression in mouse and rabbit lenses. RESULTS: NKCC1 was restricted to peripheral elongating lens fiber cells in young adult mouse and rabbit lenses. Lens KCC2 expression included the major KCC2b neuronal isoform and was detected in interior fiber cells with decreased NKCC1 expression and localized at the membranes. Lens expression of RE-1 silencing transcription factor (REST) regulated KCC2 is consistent with GAD1 and GAD2, several GABA and glutamate receptor subunits, miR-124, and other REST-regulated genes expressed in lenses. CONCLUSIONS: NKCC1 in peripheral elongating fiber cells is superseded by KCC2 expression in interior mature fiber cells that also express >20 additional integral GABA biology genes, AMPA/NMDA glutamate receptors, and an array of accessory proteins that together underlie morphogenesis in neurons. The present findings provide further evidence that this fundamental neuronal regulation is extensively conserved in lens and identify additional parallels in the morphogenetic programs that underlie lens fiber cell and neuronal differentiation and contribute to the development of visual acuity. Molecular Vision 2015-10-13 /pmc/articles/PMC4605749/ /pubmed/26539026 Text en Copyright © 2015 Molecular Vision. http://creativecommons.org/licenses/by-nc-nd/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited, used for non-commercial purposes, and is not altered or transformed.
spellingShingle Research Article
Frederikse, Peter H.
Kasinathan, Chinnaswamy
KCC2 expression supersedes NKCC1 in mature fiber cells in mouse and rabbit lenses
title KCC2 expression supersedes NKCC1 in mature fiber cells in mouse and rabbit lenses
title_full KCC2 expression supersedes NKCC1 in mature fiber cells in mouse and rabbit lenses
title_fullStr KCC2 expression supersedes NKCC1 in mature fiber cells in mouse and rabbit lenses
title_full_unstemmed KCC2 expression supersedes NKCC1 in mature fiber cells in mouse and rabbit lenses
title_short KCC2 expression supersedes NKCC1 in mature fiber cells in mouse and rabbit lenses
title_sort kcc2 expression supersedes nkcc1 in mature fiber cells in mouse and rabbit lenses
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4605749/
https://www.ncbi.nlm.nih.gov/pubmed/26539026
work_keys_str_mv AT frederiksepeterh kcc2expressionsupersedesnkcc1inmaturefibercellsinmouseandrabbitlenses
AT kasinathanchinnaswamy kcc2expressionsupersedesnkcc1inmaturefibercellsinmouseandrabbitlenses