Cargando…
A Framework for Applying Point Clouds Grabbed by Multi-Beam LIDAR in Perceiving the Driving Environment
The quick and accurate understanding of the ambient environment, which is composed of road curbs, vehicles, pedestrians, etc., is critical for developing intelligent vehicles. The road elements included in this work are road curbs and dynamic road obstacles that directly affect the drivable area. A...
Autores principales: | Liu, Jian, Liang, Huawei, Wang, Zhiling, Chen, Xiangcheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4610471/ https://www.ncbi.nlm.nih.gov/pubmed/26404290 http://dx.doi.org/10.3390/s150921931 |
Ejemplares similares
-
Point Density Variations in Airborne Lidar Point Clouds
por: Petras, Vaclav, et al.
Publicado: (2023) -
Real-Time LiDAR Point-Cloud Moving Object Segmentation for Autonomous Driving
por: Xie, Xing, et al.
Publicado: (2023) -
Systematic and Comprehensive Review of Clustering and Multi-Target Tracking Techniques for LiDAR Point Clouds in Autonomous Driving Applications
por: Adnan, Muhammad, et al.
Publicado: (2023) -
Robust Normal Estimation for 3D LiDAR Point Clouds in Urban Environments
por: Zhao, Ruibin, et al.
Publicado: (2019) -
Semantic Point Cloud Mapping of LiDAR Based on Probabilistic Uncertainty Modeling for Autonomous Driving
por: Cho, Sungjin, et al.
Publicado: (2020)