Cargando…

Stress-mediated Sin3B activation leads to negative regulation of subset of p53 target genes

The multiprotein SWI-independent 3 (Sin3)–HDAC (histone deacetylase) corepressor complex mediates gene repression through its interaction with DNA-binding factors and recruitment of chromatin-modifying proteins on to the promoters of target gene. Previously, an increased expression of Sin3B and tumo...

Descripción completa

Detalles Bibliográficos
Autores principales: Kadamb, Rama, Mittal, Shilpi, Bansal, Nidhi, Saluja, Daman
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Portland Press Ltd. 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4613689/
https://www.ncbi.nlm.nih.gov/pubmed/26181367
http://dx.doi.org/10.1042/BSR20150122
Descripción
Sumario:The multiprotein SWI-independent 3 (Sin3)–HDAC (histone deacetylase) corepressor complex mediates gene repression through its interaction with DNA-binding factors and recruitment of chromatin-modifying proteins on to the promoters of target gene. Previously, an increased expression of Sin3B and tumour suppressor protein, p53 has been established upon adriamycin treatment. We, now provide evidence that Sin3B expression is significantly up-regulated under variety of stress conditions and this response is not stress-type specific. We observed that Sin3B expression is significantly up-regulated both at transcript and at protein level upon DNA damage induced by bleomycin drug, a radiomimetic agent. This increase in Sin3B expression upon stress is found to be p53-dependent and is associated with enhanced interaction of Sin3B with Ser(15) phosphorylated p53. Binding of Sin3–HDAC repressor complex on to the promoters of p53 target genes influences gene regulation by altering histone modifications (H3K9me3 and H3K27me3) at target genes. Furthermore, knockdown of Sin3B by shRNA severely compromises p53-mediated gene repression under stress conditions. Taken together, these results suggest that stress-induced Sin3B activation is p53-dependent and is essential for p53-mediated repression of its selective target genes. The present study has an implication in understanding the transrepression mechanism of p53 under DNA damaging conditions.