Cargando…

Targeting cancer metabolism at the plasma membrane by limiting amino acid access through SLC6A14

Rapidly proliferating cancer cells increase flux through anabolic pathways to build the mass necessary to support cell division. Imported amino acids and glucose lie at the apex of the anabolic pyramid. Consistent with this, elevated expression of nutrient transporter proteins is characteristic of a...

Descripción completa

Detalles Bibliográficos
Autores principales: McCracken, Alison N., Edinger, Aimee L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Portland Press Ltd. 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4613721/
https://www.ncbi.nlm.nih.gov/pubmed/26341486
http://dx.doi.org/10.1042/BJ20150721
_version_ 1782396319895126016
author McCracken, Alison N.
Edinger, Aimee L.
author_facet McCracken, Alison N.
Edinger, Aimee L.
author_sort McCracken, Alison N.
collection PubMed
description Rapidly proliferating cancer cells increase flux through anabolic pathways to build the mass necessary to support cell division. Imported amino acids and glucose lie at the apex of the anabolic pyramid. Consistent with this, elevated expression of nutrient transporter proteins is characteristic of aggressive and highly malignant cancers. Because tumour cells are more dependent than their normal neighbours on accelerated nutrient import, these up-regulated transporters could be excellent targets for selective anti-cancer therapies. A study by Babu et al. in a recent issue of the Biochemical Journal definitively shows that SLC6A14 (where SLC is solute carrier) is one such cancer-specific amino acid transporter. Although mice completely lacking SLC6A14 are viable and exhibit normal mammary gland development, these animals are highly resistant to mammary tumour initiation and progression driven by potent oncogenes. Because SLC6A14 is essential for tumour growth yet dispensable for normal development and tissue maintenance, small molecules that block amino acid import through this transporter could be effective and selective anti-cancer agents, particularly as components of rational drug combinations.
format Online
Article
Text
id pubmed-4613721
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Portland Press Ltd.
record_format MEDLINE/PubMed
spelling pubmed-46137212015-11-02 Targeting cancer metabolism at the plasma membrane by limiting amino acid access through SLC6A14 McCracken, Alison N. Edinger, Aimee L. Biochem J Commentary Articles Rapidly proliferating cancer cells increase flux through anabolic pathways to build the mass necessary to support cell division. Imported amino acids and glucose lie at the apex of the anabolic pyramid. Consistent with this, elevated expression of nutrient transporter proteins is characteristic of aggressive and highly malignant cancers. Because tumour cells are more dependent than their normal neighbours on accelerated nutrient import, these up-regulated transporters could be excellent targets for selective anti-cancer therapies. A study by Babu et al. in a recent issue of the Biochemical Journal definitively shows that SLC6A14 (where SLC is solute carrier) is one such cancer-specific amino acid transporter. Although mice completely lacking SLC6A14 are viable and exhibit normal mammary gland development, these animals are highly resistant to mammary tumour initiation and progression driven by potent oncogenes. Because SLC6A14 is essential for tumour growth yet dispensable for normal development and tissue maintenance, small molecules that block amino acid import through this transporter could be effective and selective anti-cancer agents, particularly as components of rational drug combinations. Portland Press Ltd. 2015-09-04 2015-09-15 /pmc/articles/PMC4613721/ /pubmed/26341486 http://dx.doi.org/10.1042/BJ20150721 Text en © 2015 Authors; published by Portland Press Limited
spellingShingle Commentary Articles
McCracken, Alison N.
Edinger, Aimee L.
Targeting cancer metabolism at the plasma membrane by limiting amino acid access through SLC6A14
title Targeting cancer metabolism at the plasma membrane by limiting amino acid access through SLC6A14
title_full Targeting cancer metabolism at the plasma membrane by limiting amino acid access through SLC6A14
title_fullStr Targeting cancer metabolism at the plasma membrane by limiting amino acid access through SLC6A14
title_full_unstemmed Targeting cancer metabolism at the plasma membrane by limiting amino acid access through SLC6A14
title_short Targeting cancer metabolism at the plasma membrane by limiting amino acid access through SLC6A14
title_sort targeting cancer metabolism at the plasma membrane by limiting amino acid access through slc6a14
topic Commentary Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4613721/
https://www.ncbi.nlm.nih.gov/pubmed/26341486
http://dx.doi.org/10.1042/BJ20150721
work_keys_str_mv AT mccrackenalisonn targetingcancermetabolismattheplasmamembranebylimitingaminoacidaccessthroughslc6a14
AT edingeraimeel targetingcancermetabolismattheplasmamembranebylimitingaminoacidaccessthroughslc6a14