Cargando…
Inhibition of non-homologous end joining increases the efficiency of CRISPR/Cas9-mediated precise [TM: inserted] genome editing
Methods to introduce targeted double-strand breaks (DSBs) into DNA enable precise genome editing by increasing the rate at which externally supplied DNA fragments are incorporated into the genome through homologous recombination. The efficiency of these methods is limited by non-homologous end joini...
Autores principales: | Maruyama, Takeshi, Dougan, Stephanie K., Truttmann, Matthias, Bilate, Angelina M., Ingram, Jessica R., Ploegh, Hidde L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4618510/ https://www.ncbi.nlm.nih.gov/pubmed/25798939 http://dx.doi.org/10.1038/nbt.3190 |
Ejemplares similares
-
Harnessing accurate non-homologous end joining for efficient precise deletion in CRISPR/Cas9-mediated genome editing
por: Guo, Tao, et al.
Publicado: (2018) -
CRISPR/Cas‐based precision genome editing via microhomology‐mediated end joining
por: Van Vu, Tien, et al.
Publicado: (2020) -
Homology-mediated end joining-based targeted integration using CRISPR/Cas9
por: Yao, Xuan, et al.
Publicado: (2017) -
CRISPR-Cas9 assisted non-homologous end joining genome editing system of Halomonas bluephagenesis for large DNA fragment deletion
por: Liu, Chunyan, et al.
Publicado: (2023) -
Evolution of CRISPR/Cas Systems for Precise Genome Editing
por: Hryhorowicz, Magdalena, et al.
Publicado: (2023)