Cargando…
Target prediction utilising negative bioactivity data covering large chemical space
BACKGROUND: In silico analyses are increasingly being used to support mode-of-action investigations; however many such approaches do not utilise the large amounts of inactive data held in chemogenomic repositories. The objective of this work is concerned with the integration of such bioactivity data...
Autores principales: | Mervin, Lewis H., Afzal, Avid M., Drakakis, Georgios, Lewis, Richard, Engkvist, Ola, Bender, Andreas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4619454/ https://www.ncbi.nlm.nih.gov/pubmed/26500705 http://dx.doi.org/10.1186/s13321-015-0098-y |
Ejemplares similares
-
Orthologue chemical space and its influence on target prediction
por: Mervin, Lewis H, et al.
Publicado: (2018) -
Extending in Silico Protein Target Prediction Models to Include Functional Effects
por: Mervin, Lewis H., et al.
Publicado: (2018) -
Probabilistic Random Forest improves bioactivity predictions close to the classification threshold by taking into account experimental uncertainty
por: Mervin, Lewis H., et al.
Publicado: (2021) -
Relating GPCRs pharmacological space based on ligands chemical similarities
por: Koutsoukas, Alexios, et al.
Publicado: (2013) -
Utilisation of chemically stabilized arsenic-contaminated soil in a landfill cover
por: Kumpiene, Jurate, et al.
Publicado: (2013)