Cargando…

Heterochromatic breaks move to the nuclear periphery to continue recombinational repair

Heterochromatin mostly comprises repeated sequences prone to harmful ectopic recombination during double-strand break (DSB) repair. In Drosophila cells, ‘safe’ homologous recombination (HR) repair of heterochromatic breaks relies on a specialized pathway that relocalizes damaged sequences away from...

Descripción completa

Detalles Bibliográficos
Autores principales: Ryu, Taehyun, Spatola, Brett, Delabaere, Laetitia, Bowlin, Katherine, Hopp, Hannah, Kunitake, Ryan, Karpen, Gary H., Chiolo, Irene
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4628585/
https://www.ncbi.nlm.nih.gov/pubmed/26502056
http://dx.doi.org/10.1038/ncb3258
Descripción
Sumario:Heterochromatin mostly comprises repeated sequences prone to harmful ectopic recombination during double-strand break (DSB) repair. In Drosophila cells, ‘safe’ homologous recombination (HR) repair of heterochromatic breaks relies on a specialized pathway that relocalizes damaged sequences away from the heterochromatin domain before strand invasion. Here we show that heterochromatic DSBs move to the nuclear periphery to continue HR repair. Relocalization depends on nuclear pore and inner nuclear membrane proteins (INMPs) that anchor repair sites to the nuclear periphery via the Smc5/6-interacting proteins STUbL/RENi. Both the initial block to HR progression inside the heterochromatin domain, and the targeting of repair sites to the nuclear periphery, rely on SUMO and SUMO E3 ligases. This study reveals a critical role for SUMOylation in the spatial and temporal regulation of HR repair in heterochromatin, and identifies the nuclear periphery as a specialized site for heterochromatin repair in a multicellular eukaryote.