Cargando…

Detecting DNA regulatory motifs by incorporating positional trends in information content

On the basis of the observation that conserved positions in transcription factor binding sites are often clustered together, we propose a simple extension to the model-based motif discovery methods. We assign position-specific prior distributions to the frequency parameters of the model, penalizing...

Descripción completa

Detalles Bibliográficos
Autores principales: Kechris, Katherina J, van Zwet, Erik, Bickel, Peter J, Eisen, Michael B
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2004
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC463320/
https://www.ncbi.nlm.nih.gov/pubmed/15239835
http://dx.doi.org/10.1186/gb-2004-5-7-r50
_version_ 1782121607682064384
author Kechris, Katherina J
van Zwet, Erik
Bickel, Peter J
Eisen, Michael B
author_facet Kechris, Katherina J
van Zwet, Erik
Bickel, Peter J
Eisen, Michael B
author_sort Kechris, Katherina J
collection PubMed
description On the basis of the observation that conserved positions in transcription factor binding sites are often clustered together, we propose a simple extension to the model-based motif discovery methods. We assign position-specific prior distributions to the frequency parameters of the model, penalizing deviations from a specified conservation profile. Examples with both simulated and real data show that this extension helps discover motifs as the data become noisier or when there is a competing false motif.
format Text
id pubmed-463320
institution National Center for Biotechnology Information
language English
publishDate 2004
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-4633202004-07-16 Detecting DNA regulatory motifs by incorporating positional trends in information content Kechris, Katherina J van Zwet, Erik Bickel, Peter J Eisen, Michael B Genome Biol Method On the basis of the observation that conserved positions in transcription factor binding sites are often clustered together, we propose a simple extension to the model-based motif discovery methods. We assign position-specific prior distributions to the frequency parameters of the model, penalizing deviations from a specified conservation profile. Examples with both simulated and real data show that this extension helps discover motifs as the data become noisier or when there is a competing false motif. BioMed Central 2004 2004-06-24 /pmc/articles/PMC463320/ /pubmed/15239835 http://dx.doi.org/10.1186/gb-2004-5-7-r50 Text en Copyright © 2004 Kechris et al.; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL.
spellingShingle Method
Kechris, Katherina J
van Zwet, Erik
Bickel, Peter J
Eisen, Michael B
Detecting DNA regulatory motifs by incorporating positional trends in information content
title Detecting DNA regulatory motifs by incorporating positional trends in information content
title_full Detecting DNA regulatory motifs by incorporating positional trends in information content
title_fullStr Detecting DNA regulatory motifs by incorporating positional trends in information content
title_full_unstemmed Detecting DNA regulatory motifs by incorporating positional trends in information content
title_short Detecting DNA regulatory motifs by incorporating positional trends in information content
title_sort detecting dna regulatory motifs by incorporating positional trends in information content
topic Method
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC463320/
https://www.ncbi.nlm.nih.gov/pubmed/15239835
http://dx.doi.org/10.1186/gb-2004-5-7-r50
work_keys_str_mv AT kechriskatherinaj detectingdnaregulatorymotifsbyincorporatingpositionaltrendsininformationcontent
AT vanzweterik detectingdnaregulatorymotifsbyincorporatingpositionaltrendsininformationcontent
AT bickelpeterj detectingdnaregulatorymotifsbyincorporatingpositionaltrendsininformationcontent
AT eisenmichaelb detectingdnaregulatorymotifsbyincorporatingpositionaltrendsininformationcontent