Cargando…
Detecting DNA regulatory motifs by incorporating positional trends in information content
On the basis of the observation that conserved positions in transcription factor binding sites are often clustered together, we propose a simple extension to the model-based motif discovery methods. We assign position-specific prior distributions to the frequency parameters of the model, penalizing...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2004
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC463320/ https://www.ncbi.nlm.nih.gov/pubmed/15239835 http://dx.doi.org/10.1186/gb-2004-5-7-r50 |
_version_ | 1782121607682064384 |
---|---|
author | Kechris, Katherina J van Zwet, Erik Bickel, Peter J Eisen, Michael B |
author_facet | Kechris, Katherina J van Zwet, Erik Bickel, Peter J Eisen, Michael B |
author_sort | Kechris, Katherina J |
collection | PubMed |
description | On the basis of the observation that conserved positions in transcription factor binding sites are often clustered together, we propose a simple extension to the model-based motif discovery methods. We assign position-specific prior distributions to the frequency parameters of the model, penalizing deviations from a specified conservation profile. Examples with both simulated and real data show that this extension helps discover motifs as the data become noisier or when there is a competing false motif. |
format | Text |
id | pubmed-463320 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2004 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-4633202004-07-16 Detecting DNA regulatory motifs by incorporating positional trends in information content Kechris, Katherina J van Zwet, Erik Bickel, Peter J Eisen, Michael B Genome Biol Method On the basis of the observation that conserved positions in transcription factor binding sites are often clustered together, we propose a simple extension to the model-based motif discovery methods. We assign position-specific prior distributions to the frequency parameters of the model, penalizing deviations from a specified conservation profile. Examples with both simulated and real data show that this extension helps discover motifs as the data become noisier or when there is a competing false motif. BioMed Central 2004 2004-06-24 /pmc/articles/PMC463320/ /pubmed/15239835 http://dx.doi.org/10.1186/gb-2004-5-7-r50 Text en Copyright © 2004 Kechris et al.; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL. |
spellingShingle | Method Kechris, Katherina J van Zwet, Erik Bickel, Peter J Eisen, Michael B Detecting DNA regulatory motifs by incorporating positional trends in information content |
title | Detecting DNA regulatory motifs by incorporating positional trends in information content |
title_full | Detecting DNA regulatory motifs by incorporating positional trends in information content |
title_fullStr | Detecting DNA regulatory motifs by incorporating positional trends in information content |
title_full_unstemmed | Detecting DNA regulatory motifs by incorporating positional trends in information content |
title_short | Detecting DNA regulatory motifs by incorporating positional trends in information content |
title_sort | detecting dna regulatory motifs by incorporating positional trends in information content |
topic | Method |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC463320/ https://www.ncbi.nlm.nih.gov/pubmed/15239835 http://dx.doi.org/10.1186/gb-2004-5-7-r50 |
work_keys_str_mv | AT kechriskatherinaj detectingdnaregulatorymotifsbyincorporatingpositionaltrendsininformationcontent AT vanzweterik detectingdnaregulatorymotifsbyincorporatingpositionaltrendsininformationcontent AT bickelpeterj detectingdnaregulatorymotifsbyincorporatingpositionaltrendsininformationcontent AT eisenmichaelb detectingdnaregulatorymotifsbyincorporatingpositionaltrendsininformationcontent |