Cargando…
Bayesian integration of genetics and epigenetics detects causal regulatory SNPs underlying expression variability
The standard expression quantitative trait loci (eQTL) detects polymorphisms associated with gene expression without revealing causality. We introduce a coupled Bayesian regression approach—eQTeL, which leverages epigenetic data to estimate regulatory and gene interaction potential, and identifies c...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Pub. Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4633824/ https://www.ncbi.nlm.nih.gov/pubmed/26456756 http://dx.doi.org/10.1038/ncomms9555 |
_version_ | 1782399268228694016 |
---|---|
author | Das, Avinash Morley, Michael Moravec, Christine S. Tang, W. H. W. Hakonarson, Hakon Margulies, Kenneth B. Cappola, Thomas P. Jensen, Shane Hannenhalli, Sridhar |
author_facet | Das, Avinash Morley, Michael Moravec, Christine S. Tang, W. H. W. Hakonarson, Hakon Margulies, Kenneth B. Cappola, Thomas P. Jensen, Shane Hannenhalli, Sridhar |
author_sort | Das, Avinash |
collection | PubMed |
description | The standard expression quantitative trait loci (eQTL) detects polymorphisms associated with gene expression without revealing causality. We introduce a coupled Bayesian regression approach—eQTeL, which leverages epigenetic data to estimate regulatory and gene interaction potential, and identifies combination of regulatory single-nucleotide polymorphisms (SNPs) that explain the gene expression variance. On human heart data, eQTeL not only explains a significantly greater proportion of expression variance but also predicts gene expression more accurately than other methods. Based on realistic simulated data, we demonstrate that eQTeL accurately detects causal regulatory SNPs, including those with small effect sizes. Using various functional data, we show that SNPs detected by eQTeL are enriched for allele-specific protein binding and histone modifications, which potentially disrupt binding of core cardiac transcription factors and are spatially proximal to their target. eQTeL SNPs capture a substantial proportion of genetic determinants of expression variance and we estimate that 58% of these SNPs are putatively causal. |
format | Online Article Text |
id | pubmed-4633824 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Nature Pub. Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-46338242015-11-25 Bayesian integration of genetics and epigenetics detects causal regulatory SNPs underlying expression variability Das, Avinash Morley, Michael Moravec, Christine S. Tang, W. H. W. Hakonarson, Hakon Margulies, Kenneth B. Cappola, Thomas P. Jensen, Shane Hannenhalli, Sridhar Nat Commun Article The standard expression quantitative trait loci (eQTL) detects polymorphisms associated with gene expression without revealing causality. We introduce a coupled Bayesian regression approach—eQTeL, which leverages epigenetic data to estimate regulatory and gene interaction potential, and identifies combination of regulatory single-nucleotide polymorphisms (SNPs) that explain the gene expression variance. On human heart data, eQTeL not only explains a significantly greater proportion of expression variance but also predicts gene expression more accurately than other methods. Based on realistic simulated data, we demonstrate that eQTeL accurately detects causal regulatory SNPs, including those with small effect sizes. Using various functional data, we show that SNPs detected by eQTeL are enriched for allele-specific protein binding and histone modifications, which potentially disrupt binding of core cardiac transcription factors and are spatially proximal to their target. eQTeL SNPs capture a substantial proportion of genetic determinants of expression variance and we estimate that 58% of these SNPs are putatively causal. Nature Pub. Group 2015-10-12 /pmc/articles/PMC4633824/ /pubmed/26456756 http://dx.doi.org/10.1038/ncomms9555 Text en Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Das, Avinash Morley, Michael Moravec, Christine S. Tang, W. H. W. Hakonarson, Hakon Margulies, Kenneth B. Cappola, Thomas P. Jensen, Shane Hannenhalli, Sridhar Bayesian integration of genetics and epigenetics detects causal regulatory SNPs underlying expression variability |
title | Bayesian integration of genetics and epigenetics detects causal regulatory SNPs underlying expression variability |
title_full | Bayesian integration of genetics and epigenetics detects causal regulatory SNPs underlying expression variability |
title_fullStr | Bayesian integration of genetics and epigenetics detects causal regulatory SNPs underlying expression variability |
title_full_unstemmed | Bayesian integration of genetics and epigenetics detects causal regulatory SNPs underlying expression variability |
title_short | Bayesian integration of genetics and epigenetics detects causal regulatory SNPs underlying expression variability |
title_sort | bayesian integration of genetics and epigenetics detects causal regulatory snps underlying expression variability |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4633824/ https://www.ncbi.nlm.nih.gov/pubmed/26456756 http://dx.doi.org/10.1038/ncomms9555 |
work_keys_str_mv | AT dasavinash bayesianintegrationofgeneticsandepigeneticsdetectscausalregulatorysnpsunderlyingexpressionvariability AT morleymichael bayesianintegrationofgeneticsandepigeneticsdetectscausalregulatorysnpsunderlyingexpressionvariability AT moravecchristines bayesianintegrationofgeneticsandepigeneticsdetectscausalregulatorysnpsunderlyingexpressionvariability AT tangwhw bayesianintegrationofgeneticsandepigeneticsdetectscausalregulatorysnpsunderlyingexpressionvariability AT hakonarsonhakon bayesianintegrationofgeneticsandepigeneticsdetectscausalregulatorysnpsunderlyingexpressionvariability AT bayesianintegrationofgeneticsandepigeneticsdetectscausalregulatorysnpsunderlyingexpressionvariability AT margulieskennethb bayesianintegrationofgeneticsandepigeneticsdetectscausalregulatorysnpsunderlyingexpressionvariability AT cappolathomasp bayesianintegrationofgeneticsandepigeneticsdetectscausalregulatorysnpsunderlyingexpressionvariability AT jensenshane bayesianintegrationofgeneticsandepigeneticsdetectscausalregulatorysnpsunderlyingexpressionvariability AT hannenhallisridhar bayesianintegrationofgeneticsandepigeneticsdetectscausalregulatorysnpsunderlyingexpressionvariability |