Cargando…

A steroid metabolizing gene variant in a polyfactorial model improves risk prediction in a high incidence breast cancer population

BACKGROUND: We have combined functional gene polymorphisms with clinical factors to improve prediction and understanding of sporadic breast cancer risk, particularly within a high incidence Caucasian population. METHODS: A polyfactorial risk model (PFRM) was built from both clinical data and functio...

Descripción completa

Detalles Bibliográficos
Autores principales: Jupe, Eldon R., Dalessandri, Kathie M., Mulvihill, John J., Miike, Rei, Knowlton, Nicholas S., Pugh, Thomas W., Zhao, Lue Ping, DeFreese, Daniele C., Manjeshwar, Sharmila, Gramling, Bobby A., Wiencke, John K., Benz, Christopher C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4633888/
https://www.ncbi.nlm.nih.gov/pubmed/26673457
http://dx.doi.org/10.1016/j.bbacli.2014.11.001
_version_ 1782399273842769920
author Jupe, Eldon R.
Dalessandri, Kathie M.
Mulvihill, John J.
Miike, Rei
Knowlton, Nicholas S.
Pugh, Thomas W.
Zhao, Lue Ping
DeFreese, Daniele C.
Manjeshwar, Sharmila
Gramling, Bobby A.
Wiencke, John K.
Benz, Christopher C.
author_facet Jupe, Eldon R.
Dalessandri, Kathie M.
Mulvihill, John J.
Miike, Rei
Knowlton, Nicholas S.
Pugh, Thomas W.
Zhao, Lue Ping
DeFreese, Daniele C.
Manjeshwar, Sharmila
Gramling, Bobby A.
Wiencke, John K.
Benz, Christopher C.
author_sort Jupe, Eldon R.
collection PubMed
description BACKGROUND: We have combined functional gene polymorphisms with clinical factors to improve prediction and understanding of sporadic breast cancer risk, particularly within a high incidence Caucasian population. METHODS: A polyfactorial risk model (PFRM) was built from both clinical data and functional single nucleotide polymorphism (SNP) gene candidates using multivariate logistic regression analysis on data from 5022 US Caucasian females (1671 breast cancer cases, 3351 controls), validated in an independent set of 1193 women (400 cases, 793 controls), and reassessed in a unique high incidence breast cancer population (165 cases, 173 controls) from Marin County, CA. RESULTS: The optimized PFRM consisted of 22 SNPs (19 genes, 6 regulating steroid metabolism) and 5 clinical risk factors, and its 5-year and lifetime risk prediction performance proved significantly superior (~ 2-fold) over the Gail model (Breast Cancer Risk Assessment Tool, BCRAT), whether assessed by odds (OR) or positive likelihood (PLR) ratios over increasing model risk levels. Improved performance of the PFRM in high risk Marin women was due in part to genotype enrichment by a CYP11B2 (-344T/C) variant. CONCLUSIONS AND GENERAL SIGNIFICANCE: Since the optimized PFRM consistently outperformed BCRAT in all Caucasian study populations, it represents an improved personalized risk assessment tool. The finding of higher Marin County risk linked to a CYP11B2 aldosterone synthase SNP associated with essential hypertension offers a new genetic clue to sporadic breast cancer predisposition.
format Online
Article
Text
id pubmed-4633888
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-46338882015-12-15 A steroid metabolizing gene variant in a polyfactorial model improves risk prediction in a high incidence breast cancer population Jupe, Eldon R. Dalessandri, Kathie M. Mulvihill, John J. Miike, Rei Knowlton, Nicholas S. Pugh, Thomas W. Zhao, Lue Ping DeFreese, Daniele C. Manjeshwar, Sharmila Gramling, Bobby A. Wiencke, John K. Benz, Christopher C. BBA Clin Regular Article BACKGROUND: We have combined functional gene polymorphisms with clinical factors to improve prediction and understanding of sporadic breast cancer risk, particularly within a high incidence Caucasian population. METHODS: A polyfactorial risk model (PFRM) was built from both clinical data and functional single nucleotide polymorphism (SNP) gene candidates using multivariate logistic regression analysis on data from 5022 US Caucasian females (1671 breast cancer cases, 3351 controls), validated in an independent set of 1193 women (400 cases, 793 controls), and reassessed in a unique high incidence breast cancer population (165 cases, 173 controls) from Marin County, CA. RESULTS: The optimized PFRM consisted of 22 SNPs (19 genes, 6 regulating steroid metabolism) and 5 clinical risk factors, and its 5-year and lifetime risk prediction performance proved significantly superior (~ 2-fold) over the Gail model (Breast Cancer Risk Assessment Tool, BCRAT), whether assessed by odds (OR) or positive likelihood (PLR) ratios over increasing model risk levels. Improved performance of the PFRM in high risk Marin women was due in part to genotype enrichment by a CYP11B2 (-344T/C) variant. CONCLUSIONS AND GENERAL SIGNIFICANCE: Since the optimized PFRM consistently outperformed BCRAT in all Caucasian study populations, it represents an improved personalized risk assessment tool. The finding of higher Marin County risk linked to a CYP11B2 aldosterone synthase SNP associated with essential hypertension offers a new genetic clue to sporadic breast cancer predisposition. Elsevier 2014-11-08 /pmc/articles/PMC4633888/ /pubmed/26673457 http://dx.doi.org/10.1016/j.bbacli.2014.11.001 Text en © 2014 The Authors http://creativecommons.org/licenses/by-nc-nd/3.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
spellingShingle Regular Article
Jupe, Eldon R.
Dalessandri, Kathie M.
Mulvihill, John J.
Miike, Rei
Knowlton, Nicholas S.
Pugh, Thomas W.
Zhao, Lue Ping
DeFreese, Daniele C.
Manjeshwar, Sharmila
Gramling, Bobby A.
Wiencke, John K.
Benz, Christopher C.
A steroid metabolizing gene variant in a polyfactorial model improves risk prediction in a high incidence breast cancer population
title A steroid metabolizing gene variant in a polyfactorial model improves risk prediction in a high incidence breast cancer population
title_full A steroid metabolizing gene variant in a polyfactorial model improves risk prediction in a high incidence breast cancer population
title_fullStr A steroid metabolizing gene variant in a polyfactorial model improves risk prediction in a high incidence breast cancer population
title_full_unstemmed A steroid metabolizing gene variant in a polyfactorial model improves risk prediction in a high incidence breast cancer population
title_short A steroid metabolizing gene variant in a polyfactorial model improves risk prediction in a high incidence breast cancer population
title_sort steroid metabolizing gene variant in a polyfactorial model improves risk prediction in a high incidence breast cancer population
topic Regular Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4633888/
https://www.ncbi.nlm.nih.gov/pubmed/26673457
http://dx.doi.org/10.1016/j.bbacli.2014.11.001
work_keys_str_mv AT jupeeldonr asteroidmetabolizinggenevariantinapolyfactorialmodelimprovesriskpredictioninahighincidencebreastcancerpopulation
AT dalessandrikathiem asteroidmetabolizinggenevariantinapolyfactorialmodelimprovesriskpredictioninahighincidencebreastcancerpopulation
AT mulvihilljohnj asteroidmetabolizinggenevariantinapolyfactorialmodelimprovesriskpredictioninahighincidencebreastcancerpopulation
AT miikerei asteroidmetabolizinggenevariantinapolyfactorialmodelimprovesriskpredictioninahighincidencebreastcancerpopulation
AT knowltonnicholass asteroidmetabolizinggenevariantinapolyfactorialmodelimprovesriskpredictioninahighincidencebreastcancerpopulation
AT pughthomasw asteroidmetabolizinggenevariantinapolyfactorialmodelimprovesriskpredictioninahighincidencebreastcancerpopulation
AT zhaolueping asteroidmetabolizinggenevariantinapolyfactorialmodelimprovesriskpredictioninahighincidencebreastcancerpopulation
AT defreesedanielec asteroidmetabolizinggenevariantinapolyfactorialmodelimprovesriskpredictioninahighincidencebreastcancerpopulation
AT manjeshwarsharmila asteroidmetabolizinggenevariantinapolyfactorialmodelimprovesriskpredictioninahighincidencebreastcancerpopulation
AT gramlingbobbya asteroidmetabolizinggenevariantinapolyfactorialmodelimprovesriskpredictioninahighincidencebreastcancerpopulation
AT wienckejohnk asteroidmetabolizinggenevariantinapolyfactorialmodelimprovesriskpredictioninahighincidencebreastcancerpopulation
AT benzchristopherc asteroidmetabolizinggenevariantinapolyfactorialmodelimprovesriskpredictioninahighincidencebreastcancerpopulation
AT jupeeldonr steroidmetabolizinggenevariantinapolyfactorialmodelimprovesriskpredictioninahighincidencebreastcancerpopulation
AT dalessandrikathiem steroidmetabolizinggenevariantinapolyfactorialmodelimprovesriskpredictioninahighincidencebreastcancerpopulation
AT mulvihilljohnj steroidmetabolizinggenevariantinapolyfactorialmodelimprovesriskpredictioninahighincidencebreastcancerpopulation
AT miikerei steroidmetabolizinggenevariantinapolyfactorialmodelimprovesriskpredictioninahighincidencebreastcancerpopulation
AT knowltonnicholass steroidmetabolizinggenevariantinapolyfactorialmodelimprovesriskpredictioninahighincidencebreastcancerpopulation
AT pughthomasw steroidmetabolizinggenevariantinapolyfactorialmodelimprovesriskpredictioninahighincidencebreastcancerpopulation
AT zhaolueping steroidmetabolizinggenevariantinapolyfactorialmodelimprovesriskpredictioninahighincidencebreastcancerpopulation
AT defreesedanielec steroidmetabolizinggenevariantinapolyfactorialmodelimprovesriskpredictioninahighincidencebreastcancerpopulation
AT manjeshwarsharmila steroidmetabolizinggenevariantinapolyfactorialmodelimprovesriskpredictioninahighincidencebreastcancerpopulation
AT gramlingbobbya steroidmetabolizinggenevariantinapolyfactorialmodelimprovesriskpredictioninahighincidencebreastcancerpopulation
AT wienckejohnk steroidmetabolizinggenevariantinapolyfactorialmodelimprovesriskpredictioninahighincidencebreastcancerpopulation
AT benzchristopherc steroidmetabolizinggenevariantinapolyfactorialmodelimprovesriskpredictioninahighincidencebreastcancerpopulation