Cargando…
A steroid metabolizing gene variant in a polyfactorial model improves risk prediction in a high incidence breast cancer population
BACKGROUND: We have combined functional gene polymorphisms with clinical factors to improve prediction and understanding of sporadic breast cancer risk, particularly within a high incidence Caucasian population. METHODS: A polyfactorial risk model (PFRM) was built from both clinical data and functio...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4633888/ https://www.ncbi.nlm.nih.gov/pubmed/26673457 http://dx.doi.org/10.1016/j.bbacli.2014.11.001 |
_version_ | 1782399273842769920 |
---|---|
author | Jupe, Eldon R. Dalessandri, Kathie M. Mulvihill, John J. Miike, Rei Knowlton, Nicholas S. Pugh, Thomas W. Zhao, Lue Ping DeFreese, Daniele C. Manjeshwar, Sharmila Gramling, Bobby A. Wiencke, John K. Benz, Christopher C. |
author_facet | Jupe, Eldon R. Dalessandri, Kathie M. Mulvihill, John J. Miike, Rei Knowlton, Nicholas S. Pugh, Thomas W. Zhao, Lue Ping DeFreese, Daniele C. Manjeshwar, Sharmila Gramling, Bobby A. Wiencke, John K. Benz, Christopher C. |
author_sort | Jupe, Eldon R. |
collection | PubMed |
description | BACKGROUND: We have combined functional gene polymorphisms with clinical factors to improve prediction and understanding of sporadic breast cancer risk, particularly within a high incidence Caucasian population. METHODS: A polyfactorial risk model (PFRM) was built from both clinical data and functional single nucleotide polymorphism (SNP) gene candidates using multivariate logistic regression analysis on data from 5022 US Caucasian females (1671 breast cancer cases, 3351 controls), validated in an independent set of 1193 women (400 cases, 793 controls), and reassessed in a unique high incidence breast cancer population (165 cases, 173 controls) from Marin County, CA. RESULTS: The optimized PFRM consisted of 22 SNPs (19 genes, 6 regulating steroid metabolism) and 5 clinical risk factors, and its 5-year and lifetime risk prediction performance proved significantly superior (~ 2-fold) over the Gail model (Breast Cancer Risk Assessment Tool, BCRAT), whether assessed by odds (OR) or positive likelihood (PLR) ratios over increasing model risk levels. Improved performance of the PFRM in high risk Marin women was due in part to genotype enrichment by a CYP11B2 (-344T/C) variant. CONCLUSIONS AND GENERAL SIGNIFICANCE: Since the optimized PFRM consistently outperformed BCRAT in all Caucasian study populations, it represents an improved personalized risk assessment tool. The finding of higher Marin County risk linked to a CYP11B2 aldosterone synthase SNP associated with essential hypertension offers a new genetic clue to sporadic breast cancer predisposition. |
format | Online Article Text |
id | pubmed-4633888 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-46338882015-12-15 A steroid metabolizing gene variant in a polyfactorial model improves risk prediction in a high incidence breast cancer population Jupe, Eldon R. Dalessandri, Kathie M. Mulvihill, John J. Miike, Rei Knowlton, Nicholas S. Pugh, Thomas W. Zhao, Lue Ping DeFreese, Daniele C. Manjeshwar, Sharmila Gramling, Bobby A. Wiencke, John K. Benz, Christopher C. BBA Clin Regular Article BACKGROUND: We have combined functional gene polymorphisms with clinical factors to improve prediction and understanding of sporadic breast cancer risk, particularly within a high incidence Caucasian population. METHODS: A polyfactorial risk model (PFRM) was built from both clinical data and functional single nucleotide polymorphism (SNP) gene candidates using multivariate logistic regression analysis on data from 5022 US Caucasian females (1671 breast cancer cases, 3351 controls), validated in an independent set of 1193 women (400 cases, 793 controls), and reassessed in a unique high incidence breast cancer population (165 cases, 173 controls) from Marin County, CA. RESULTS: The optimized PFRM consisted of 22 SNPs (19 genes, 6 regulating steroid metabolism) and 5 clinical risk factors, and its 5-year and lifetime risk prediction performance proved significantly superior (~ 2-fold) over the Gail model (Breast Cancer Risk Assessment Tool, BCRAT), whether assessed by odds (OR) or positive likelihood (PLR) ratios over increasing model risk levels. Improved performance of the PFRM in high risk Marin women was due in part to genotype enrichment by a CYP11B2 (-344T/C) variant. CONCLUSIONS AND GENERAL SIGNIFICANCE: Since the optimized PFRM consistently outperformed BCRAT in all Caucasian study populations, it represents an improved personalized risk assessment tool. The finding of higher Marin County risk linked to a CYP11B2 aldosterone synthase SNP associated with essential hypertension offers a new genetic clue to sporadic breast cancer predisposition. Elsevier 2014-11-08 /pmc/articles/PMC4633888/ /pubmed/26673457 http://dx.doi.org/10.1016/j.bbacli.2014.11.001 Text en © 2014 The Authors http://creativecommons.org/licenses/by-nc-nd/3.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/). |
spellingShingle | Regular Article Jupe, Eldon R. Dalessandri, Kathie M. Mulvihill, John J. Miike, Rei Knowlton, Nicholas S. Pugh, Thomas W. Zhao, Lue Ping DeFreese, Daniele C. Manjeshwar, Sharmila Gramling, Bobby A. Wiencke, John K. Benz, Christopher C. A steroid metabolizing gene variant in a polyfactorial model improves risk prediction in a high incidence breast cancer population |
title | A steroid metabolizing gene variant in a polyfactorial model improves risk prediction in a high incidence breast cancer population |
title_full | A steroid metabolizing gene variant in a polyfactorial model improves risk prediction in a high incidence breast cancer population |
title_fullStr | A steroid metabolizing gene variant in a polyfactorial model improves risk prediction in a high incidence breast cancer population |
title_full_unstemmed | A steroid metabolizing gene variant in a polyfactorial model improves risk prediction in a high incidence breast cancer population |
title_short | A steroid metabolizing gene variant in a polyfactorial model improves risk prediction in a high incidence breast cancer population |
title_sort | steroid metabolizing gene variant in a polyfactorial model improves risk prediction in a high incidence breast cancer population |
topic | Regular Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4633888/ https://www.ncbi.nlm.nih.gov/pubmed/26673457 http://dx.doi.org/10.1016/j.bbacli.2014.11.001 |
work_keys_str_mv | AT jupeeldonr asteroidmetabolizinggenevariantinapolyfactorialmodelimprovesriskpredictioninahighincidencebreastcancerpopulation AT dalessandrikathiem asteroidmetabolizinggenevariantinapolyfactorialmodelimprovesriskpredictioninahighincidencebreastcancerpopulation AT mulvihilljohnj asteroidmetabolizinggenevariantinapolyfactorialmodelimprovesriskpredictioninahighincidencebreastcancerpopulation AT miikerei asteroidmetabolizinggenevariantinapolyfactorialmodelimprovesriskpredictioninahighincidencebreastcancerpopulation AT knowltonnicholass asteroidmetabolizinggenevariantinapolyfactorialmodelimprovesriskpredictioninahighincidencebreastcancerpopulation AT pughthomasw asteroidmetabolizinggenevariantinapolyfactorialmodelimprovesriskpredictioninahighincidencebreastcancerpopulation AT zhaolueping asteroidmetabolizinggenevariantinapolyfactorialmodelimprovesriskpredictioninahighincidencebreastcancerpopulation AT defreesedanielec asteroidmetabolizinggenevariantinapolyfactorialmodelimprovesriskpredictioninahighincidencebreastcancerpopulation AT manjeshwarsharmila asteroidmetabolizinggenevariantinapolyfactorialmodelimprovesriskpredictioninahighincidencebreastcancerpopulation AT gramlingbobbya asteroidmetabolizinggenevariantinapolyfactorialmodelimprovesriskpredictioninahighincidencebreastcancerpopulation AT wienckejohnk asteroidmetabolizinggenevariantinapolyfactorialmodelimprovesriskpredictioninahighincidencebreastcancerpopulation AT benzchristopherc asteroidmetabolizinggenevariantinapolyfactorialmodelimprovesriskpredictioninahighincidencebreastcancerpopulation AT jupeeldonr steroidmetabolizinggenevariantinapolyfactorialmodelimprovesriskpredictioninahighincidencebreastcancerpopulation AT dalessandrikathiem steroidmetabolizinggenevariantinapolyfactorialmodelimprovesriskpredictioninahighincidencebreastcancerpopulation AT mulvihilljohnj steroidmetabolizinggenevariantinapolyfactorialmodelimprovesriskpredictioninahighincidencebreastcancerpopulation AT miikerei steroidmetabolizinggenevariantinapolyfactorialmodelimprovesriskpredictioninahighincidencebreastcancerpopulation AT knowltonnicholass steroidmetabolizinggenevariantinapolyfactorialmodelimprovesriskpredictioninahighincidencebreastcancerpopulation AT pughthomasw steroidmetabolizinggenevariantinapolyfactorialmodelimprovesriskpredictioninahighincidencebreastcancerpopulation AT zhaolueping steroidmetabolizinggenevariantinapolyfactorialmodelimprovesriskpredictioninahighincidencebreastcancerpopulation AT defreesedanielec steroidmetabolizinggenevariantinapolyfactorialmodelimprovesriskpredictioninahighincidencebreastcancerpopulation AT manjeshwarsharmila steroidmetabolizinggenevariantinapolyfactorialmodelimprovesriskpredictioninahighincidencebreastcancerpopulation AT gramlingbobbya steroidmetabolizinggenevariantinapolyfactorialmodelimprovesriskpredictioninahighincidencebreastcancerpopulation AT wienckejohnk steroidmetabolizinggenevariantinapolyfactorialmodelimprovesriskpredictioninahighincidencebreastcancerpopulation AT benzchristopherc steroidmetabolizinggenevariantinapolyfactorialmodelimprovesriskpredictioninahighincidencebreastcancerpopulation |