Cargando…
Novel phenotype in beagle dogs characterized by skin response to compound 48/80 focusing on skin mast cell degranulation
Beagle dogs have long been employed in toxicology studies and as skin disease models. Compared with other experimental animal species, they are known to be susceptible to skin responses, such as rashes, from exposure to various chemical compounds. Here, a unique dog phenotype was identified that sho...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Japanese Association for Laboratory Animal Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4637369/ https://www.ncbi.nlm.nih.gov/pubmed/26062768 http://dx.doi.org/10.1538/expanim.15-0004 |
Sumario: | Beagle dogs have long been employed in toxicology studies and as skin disease models. Compared with other experimental animal species, they are known to be susceptible to skin responses, such as rashes, from exposure to various chemical compounds. Here, a unique dog phenotype was identified that showed no skin response to compound 48/80, a mast cell degranulating agent. Although the skin responses to intradermal injection of polyoxyethylene castor oil derivative (HCO-60, a nonionic detergent), histamine dihydrochloride, concanavalin A (IgE receptor-mediated stimuli), or calcium ionophore A23187 were comparable in wild-type (WT) dogs and these nonresponder (NR) dogs, only the response to compound 48/80 was entirely absent from NR dogs. The skin mast cell density and histamine content per mast cell were histologically comparable between WT and NR dogs. By checking for skin responses to compound 48/80, NR dogs were found to exist at the proportion of 17–20% among four animal breeders. From retrospective analysis of in-house breeding histories, the NR phenotype appears to conform to the Mendelian pattern of recessive inheritance. The standard skin response in WT dogs developed at 2–4 months of age. In conclusion, this unique phenotype, typified by insensitivity in the compound 48/80-induced degranulation pathway in mast cells, has been widely retained by recessive inheritance in beagle dogs among general experimental animal breeders. The knowledge concerning this phenotype could lead to better utilization of dogs in studies and aid in model development. |
---|