Cargando…

PACE4 regulates apoptosis in human prostate cancer cells via endoplasmic reticulum stress and mitochondrial signaling pathways

BACKGROUND: PACE4 is a proprotein convertase capable of processing numerous substrates involved in tumor growth, invasion, and metastasis. However, the precise role of PACE4 during prostate cancer cell apoptosis has not been reported. METHODS: In the present study, human prostate cancer cell lines D...

Descripción completa

Detalles Bibliográficos
Autores principales: Yao, Zhiyong, Sun, Bin, Hong, Quan, Yan, Jingmin, Mu, Dawei, Li, Jianye, Sheng, Haibo, Guo, Heqing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove Medical Press 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4639519/
https://www.ncbi.nlm.nih.gov/pubmed/26604689
http://dx.doi.org/10.2147/DDDT.S86881
Descripción
Sumario:BACKGROUND: PACE4 is a proprotein convertase capable of processing numerous substrates involved in tumor growth, invasion, and metastasis. However, the precise role of PACE4 during prostate cancer cell apoptosis has not been reported. METHODS: In the present study, human prostate cancer cell lines DU145, LNCaP, and PC3 were transfected with PACE4 small interfering (si)RNA to investigate the underlying mechanisms of apoptosis. RESULTS: We revealed that PACE4 siRNA exhibited antitumor activity by inducing apoptosis, as determined by Cell Counting Kit-8 (CCK-8), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltet-razolium bromide (MTT) assay, cell cycle analysis, Hoechst staining, caspase-3/7 activity, and western blot analysis. In addition, PACE4 siRNA significantly increased the ratio of Bax/Bcl-2, which led to the release of cytochrome c. Moreover, PACE4 siRNA also induced endoplasmic reticulum stress by increasing the expression of GRP78, GRP94, p-PERK, and p-eIF2α. The ratio of Bax/Bcl-2 and GRP78 were also increased in PACE4 gene knockdown prostate cancer cells compared with the control cells. CONCLUSION: These data demonstrate that PACE4 siRNA may exert its antitumor activity through mitochondrial and endoplasmic reticulum stress signaling pathways, indicating it may be a novel therapeutic target for prostate cancer.