Cargando…
Ubiquitin ligase TRIM3 controls hippocampal plasticity and learning by regulating synaptic γ-actin levels
Synaptic plasticity requires remodeling of the actin cytoskeleton. Although two actin isoforms, β- and γ-actin, are expressed in dendritic spines, the specific contribution of γ-actin in the expression of synaptic plasticity is unknown. We show that synaptic γ-actin levels are regulated by the E3 ub...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4639863/ https://www.ncbi.nlm.nih.gov/pubmed/26527743 http://dx.doi.org/10.1083/jcb.201506048 |
_version_ | 1782400001291321344 |
---|---|
author | Schreiber, Joerg Végh, Marlene J. Dawitz, Julia Kroon, Tim Loos, Maarten Labonté, Dorthe Li, Ka Wan Van Nierop, Pim Van Diepen, Michiel T. De Zeeuw, Chris I. Kneussel, Matthias Meredith, Rhiannon M. Smit, August B. Van Kesteren, Ronald E. |
author_facet | Schreiber, Joerg Végh, Marlene J. Dawitz, Julia Kroon, Tim Loos, Maarten Labonté, Dorthe Li, Ka Wan Van Nierop, Pim Van Diepen, Michiel T. De Zeeuw, Chris I. Kneussel, Matthias Meredith, Rhiannon M. Smit, August B. Van Kesteren, Ronald E. |
author_sort | Schreiber, Joerg |
collection | PubMed |
description | Synaptic plasticity requires remodeling of the actin cytoskeleton. Although two actin isoforms, β- and γ-actin, are expressed in dendritic spines, the specific contribution of γ-actin in the expression of synaptic plasticity is unknown. We show that synaptic γ-actin levels are regulated by the E3 ubiquitin ligase TRIM3. TRIM3 protein and Actg1 transcript are colocalized in messenger ribonucleoprotein granules responsible for the dendritic targeting of messenger RNAs. TRIM3 polyubiquitylates γ-actin, most likely cotranslationally at synaptic sites. Trim3(−/−) mice consequently have increased levels of γ-actin at hippocampal synapses, resulting in higher spine densities, increased long-term potentiation, and enhanced short-term contextual fear memory consolidation. Interestingly, hippocampal deletion of Actg1 caused an increase in long-term fear memory. Collectively, our findings suggest that temporal control of γ-actin levels by TRIM3 is required to regulate the timing of hippocampal plasticity. We propose a model in which TRIM3 regulates synaptic γ-actin turnover and actin filament stability and thus forms a transient inhibitory constraint on the expression of hippocampal synaptic plasticity. |
format | Online Article Text |
id | pubmed-4639863 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-46398632016-05-09 Ubiquitin ligase TRIM3 controls hippocampal plasticity and learning by regulating synaptic γ-actin levels Schreiber, Joerg Végh, Marlene J. Dawitz, Julia Kroon, Tim Loos, Maarten Labonté, Dorthe Li, Ka Wan Van Nierop, Pim Van Diepen, Michiel T. De Zeeuw, Chris I. Kneussel, Matthias Meredith, Rhiannon M. Smit, August B. Van Kesteren, Ronald E. J Cell Biol Research Articles Synaptic plasticity requires remodeling of the actin cytoskeleton. Although two actin isoforms, β- and γ-actin, are expressed in dendritic spines, the specific contribution of γ-actin in the expression of synaptic plasticity is unknown. We show that synaptic γ-actin levels are regulated by the E3 ubiquitin ligase TRIM3. TRIM3 protein and Actg1 transcript are colocalized in messenger ribonucleoprotein granules responsible for the dendritic targeting of messenger RNAs. TRIM3 polyubiquitylates γ-actin, most likely cotranslationally at synaptic sites. Trim3(−/−) mice consequently have increased levels of γ-actin at hippocampal synapses, resulting in higher spine densities, increased long-term potentiation, and enhanced short-term contextual fear memory consolidation. Interestingly, hippocampal deletion of Actg1 caused an increase in long-term fear memory. Collectively, our findings suggest that temporal control of γ-actin levels by TRIM3 is required to regulate the timing of hippocampal plasticity. We propose a model in which TRIM3 regulates synaptic γ-actin turnover and actin filament stability and thus forms a transient inhibitory constraint on the expression of hippocampal synaptic plasticity. The Rockefeller University Press 2015-11-09 /pmc/articles/PMC4639863/ /pubmed/26527743 http://dx.doi.org/10.1083/jcb.201506048 Text en © 2015 Schreiber et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/). |
spellingShingle | Research Articles Schreiber, Joerg Végh, Marlene J. Dawitz, Julia Kroon, Tim Loos, Maarten Labonté, Dorthe Li, Ka Wan Van Nierop, Pim Van Diepen, Michiel T. De Zeeuw, Chris I. Kneussel, Matthias Meredith, Rhiannon M. Smit, August B. Van Kesteren, Ronald E. Ubiquitin ligase TRIM3 controls hippocampal plasticity and learning by regulating synaptic γ-actin levels |
title | Ubiquitin ligase TRIM3 controls hippocampal plasticity and learning by regulating synaptic γ-actin levels |
title_full | Ubiquitin ligase TRIM3 controls hippocampal plasticity and learning by regulating synaptic γ-actin levels |
title_fullStr | Ubiquitin ligase TRIM3 controls hippocampal plasticity and learning by regulating synaptic γ-actin levels |
title_full_unstemmed | Ubiquitin ligase TRIM3 controls hippocampal plasticity and learning by regulating synaptic γ-actin levels |
title_short | Ubiquitin ligase TRIM3 controls hippocampal plasticity and learning by regulating synaptic γ-actin levels |
title_sort | ubiquitin ligase trim3 controls hippocampal plasticity and learning by regulating synaptic γ-actin levels |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4639863/ https://www.ncbi.nlm.nih.gov/pubmed/26527743 http://dx.doi.org/10.1083/jcb.201506048 |
work_keys_str_mv | AT schreiberjoerg ubiquitinligasetrim3controlshippocampalplasticityandlearningbyregulatingsynapticgactinlevels AT veghmarlenej ubiquitinligasetrim3controlshippocampalplasticityandlearningbyregulatingsynapticgactinlevels AT dawitzjulia ubiquitinligasetrim3controlshippocampalplasticityandlearningbyregulatingsynapticgactinlevels AT kroontim ubiquitinligasetrim3controlshippocampalplasticityandlearningbyregulatingsynapticgactinlevels AT loosmaarten ubiquitinligasetrim3controlshippocampalplasticityandlearningbyregulatingsynapticgactinlevels AT labontedorthe ubiquitinligasetrim3controlshippocampalplasticityandlearningbyregulatingsynapticgactinlevels AT likawan ubiquitinligasetrim3controlshippocampalplasticityandlearningbyregulatingsynapticgactinlevels AT vannieroppim ubiquitinligasetrim3controlshippocampalplasticityandlearningbyregulatingsynapticgactinlevels AT vandiepenmichielt ubiquitinligasetrim3controlshippocampalplasticityandlearningbyregulatingsynapticgactinlevels AT dezeeuwchrisi ubiquitinligasetrim3controlshippocampalplasticityandlearningbyregulatingsynapticgactinlevels AT kneusselmatthias ubiquitinligasetrim3controlshippocampalplasticityandlearningbyregulatingsynapticgactinlevels AT meredithrhiannonm ubiquitinligasetrim3controlshippocampalplasticityandlearningbyregulatingsynapticgactinlevels AT smitaugustb ubiquitinligasetrim3controlshippocampalplasticityandlearningbyregulatingsynapticgactinlevels AT vankesterenronalde ubiquitinligasetrim3controlshippocampalplasticityandlearningbyregulatingsynapticgactinlevels |