Cargando…

The PDK1–Rsk Signaling Pathway Controls Langerhans Cell Proliferation and Patterning

Langerhans cells (LC), the dendritic cells of the epidermis, are distributed in a distinctive regularly spaced array. In the mouse, the LC array is established in the first few days of life from proliferating local precursors, but the regulating signaling pathways are not fully understood. We found...

Descripción completa

Detalles Bibliográficos
Autores principales: Zaru, Rossana, Matthews, Stephen P., Edgar, Alexander J., Prescott, Alan R., Gomez-Nicola, Diego, Hanauer, André, Watts, Colin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AAI 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4640173/
https://www.ncbi.nlm.nih.gov/pubmed/26401001
http://dx.doi.org/10.4049/jimmunol.1501520
Descripción
Sumario:Langerhans cells (LC), the dendritic cells of the epidermis, are distributed in a distinctive regularly spaced array. In the mouse, the LC array is established in the first few days of life from proliferating local precursors, but the regulating signaling pathways are not fully understood. We found that mice lacking the kinase phosphoinositide-dependent kinase 1 selectively lack LC. Deletion of the phosphoinositide-dependent kinase 1 target kinases, ribosomal S6 kinase 1 (Rsk1) and Rsk2, produced a striking perturbation in the LC network: LC density was reduced 2-fold, but LC size was increased by the same magnitude. Reduced LC numbers in Rsk1/2(−/−) mice was not due to accelerated emigration from the skin but rather to reduced proliferation at least in adults. Rsk1/2 were required for normal LC patterning in neonates, but not when LC were ablated in adults and replaced by bone marrow–derived cells. Increased LC size was an intrinsic response to reduced LC numbers, reversible on LC emigration, and could be observed in wild type epidermis where LC size also correlated inversely with LC density. Our results identify a key signaling pathway needed to establish a normal LC network and suggest that LC might maintain epidermal surveillance by increasing their “footprint” when their numbers are limited.