Cargando…

Inhibiting inducible miR-223 further reduces viable cells in human cancer cell lines MCF-7 and PC3 treated by celastrol

BACKGROUND: Celastrol is a novel anti-tumor agent. Ways to further enhance this effect of celastrol has attracted much research attention. METHODS AND RESULTS: Here, we report that celastrol treatment can elevate miR-223 in human breast cancer cell line MCF-7 and prostate cancer PC3. Down-regulating...

Descripción completa

Detalles Bibliográficos
Autores principales: Cao, Lu, Zhang, Xue, Cao, Fanfan, Wang, Ying, Shen, Yufan, Yang, Chunxin, Uzan, Georges, Peng, Bin, Zhang, Denghai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4640397/
https://www.ncbi.nlm.nih.gov/pubmed/26552919
http://dx.doi.org/10.1186/s12885-015-1909-2
Descripción
Sumario:BACKGROUND: Celastrol is a novel anti-tumor agent. Ways to further enhance this effect of celastrol has attracted much research attention. METHODS AND RESULTS: Here, we report that celastrol treatment can elevate miR-223 in human breast cancer cell line MCF-7 and prostate cancer PC3. Down-regulating miR-223 could increase the number of viable cells, yet it further reduced viable cells in samples that were treated by celastrol; up-regulation of miR-223 displayed opposite effects. Celastrol’s miR-223 induction might be due to NF-κB inhibition and transient mTOR activation: these two events occurred prior to miR-223 elevation in celastrol-treated cells. NF-κB inhibitor, like celastrol, could induce miR-223; the induction of miR-223 by NF-κB inhibitor or celastrol was reduced by the use of mTOR inhibitor. Finally and interestingly, miR-223 also could affect NF-κB and mTOR and the effects were different between cells treated or not treated with celastrol, thus providing an explanation for differing effects of miR-223 alteration on cellular viability in the presence of celastrol or not. CONCLUSIONS: For the first time, we disclose that celastrol could induce miR-223 in breast and prostate cancer cells, and that inhibiting miR-223 could further reduce the living cells in celastrol-treated cancer cell lines. We thus provide a novel way to increase celastrol’s anti-cancer effects.