Cargando…
Novel anti-thrombotic agent for modulation of protein disulfide isomerase family member ERp57 for prophylactic therapy
Protein disulfide isomerase (PDI) family members including PDI and ERp57 emerge as novel targets for anti-thrombotic treatments, but chemical agents with selectivity remain to be explored. We previously reported a novel derivative of danshensu (DSS), known as ADTM, displayed strong cardioprotective...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4650696/ https://www.ncbi.nlm.nih.gov/pubmed/26037049 http://dx.doi.org/10.1038/srep10353 |
Sumario: | Protein disulfide isomerase (PDI) family members including PDI and ERp57 emerge as novel targets for anti-thrombotic treatments, but chemical agents with selectivity remain to be explored. We previously reported a novel derivative of danshensu (DSS), known as ADTM, displayed strong cardioprotective effects against oxidative stress-induced cellular injury in vitro and acute myocardial infarct in vivo. Herein, using chemical proteomics approach, we identified ERp57 as a major target of ADTM. ADTM displayed potent inhibitory effects on the redox activity of ERp57, inhibited the adenosine diphosphate (ADP)-induced expressions of P-selectin and αIIbβ3 integrin, and disrupted the interaction between ERp57 and αIIbβ3. In addition, ADTM inhibited both arachidonic acid (AA)-induced and ADP-induced platelet aggregation in vitro. Furthermore, ADTM significantly inhibited rat platelet aggregation and thrombus formation in vivo. Taken together, ADTM represents a promising candidate for anti-thrombotic therapy targeting ERp57. |
---|