Cargando…
Comparison of targeted next-generation sequencing and Sanger sequencing for the detection of PIK3CA mutations in breast cancer
BACKGROUND: Phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha, PIK3CA, is one of the most frequently mutated genes in breast cancer, and the mutation status of PIK3CA has clinical relevance related to response to therapy. The aim of our study was to investigate the mutation sta...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4652376/ https://www.ncbi.nlm.nih.gov/pubmed/26587011 http://dx.doi.org/10.1186/s12907-015-0020-6 |
_version_ | 1782401740949159936 |
---|---|
author | Arsenic, Ruza Treue, Denise Lehmann, Annika Hummel, Michael Dietel, Manfred Denkert, Carsten Budczies, Jan |
author_facet | Arsenic, Ruza Treue, Denise Lehmann, Annika Hummel, Michael Dietel, Manfred Denkert, Carsten Budczies, Jan |
author_sort | Arsenic, Ruza |
collection | PubMed |
description | BACKGROUND: Phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha, PIK3CA, is one of the most frequently mutated genes in breast cancer, and the mutation status of PIK3CA has clinical relevance related to response to therapy. The aim of our study was to investigate the mutation status of PIK3CA gene and to evaluate the concordance between NGS and SGS for the most important hotspot regions in exon 9 and 20, to investigate additional hotspots outside of these exons using NGS, and to correlate the PIK3CA mutation status with the clinicopathological characteristics of the cohort. METHODS: In the current study, next-generation sequencing (NGS) and Sanger Sequencing (SGS) was used for the mutational analysis of PIK3CA in 186 breast carcinomas. RESULTS: Altogether, 64 tumors had PIK3CA mutations, 55 of these mutations occurred in exons 9 and 20. Out of these 55 mutations, 52 could also be detected by Sanger sequencing resulting in a concordance of 98.4 % between the two sequencing methods. The three mutations missed by SGS had low variant frequencies below 10 %. Additionally, 4.8 % of the tumors had mutations in exons 1, 4, 7, and 13 of PIK3CA that were not detected by SGS. PIK3CA mutation status was significantly associated with hormone receptor-positivity, HER2-negativity, tumor grade, and lymph node involvement. However, there was no statistically significant association between the PIK3CA mutation status and overall survival. CONCLUSIONS: Based on our study, NGS is recommended as follows: 1) for correctly assessing the mutation status of PIK3CA in breast cancer, especially for cases with low tumor content, 2) for the detection of subclonal mutations, and 3) for simultaneous mutation detection in multiple exons. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12907-015-0020-6) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4652376 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-46523762015-11-20 Comparison of targeted next-generation sequencing and Sanger sequencing for the detection of PIK3CA mutations in breast cancer Arsenic, Ruza Treue, Denise Lehmann, Annika Hummel, Michael Dietel, Manfred Denkert, Carsten Budczies, Jan BMC Clin Pathol Research Article BACKGROUND: Phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha, PIK3CA, is one of the most frequently mutated genes in breast cancer, and the mutation status of PIK3CA has clinical relevance related to response to therapy. The aim of our study was to investigate the mutation status of PIK3CA gene and to evaluate the concordance between NGS and SGS for the most important hotspot regions in exon 9 and 20, to investigate additional hotspots outside of these exons using NGS, and to correlate the PIK3CA mutation status with the clinicopathological characteristics of the cohort. METHODS: In the current study, next-generation sequencing (NGS) and Sanger Sequencing (SGS) was used for the mutational analysis of PIK3CA in 186 breast carcinomas. RESULTS: Altogether, 64 tumors had PIK3CA mutations, 55 of these mutations occurred in exons 9 and 20. Out of these 55 mutations, 52 could also be detected by Sanger sequencing resulting in a concordance of 98.4 % between the two sequencing methods. The three mutations missed by SGS had low variant frequencies below 10 %. Additionally, 4.8 % of the tumors had mutations in exons 1, 4, 7, and 13 of PIK3CA that were not detected by SGS. PIK3CA mutation status was significantly associated with hormone receptor-positivity, HER2-negativity, tumor grade, and lymph node involvement. However, there was no statistically significant association between the PIK3CA mutation status and overall survival. CONCLUSIONS: Based on our study, NGS is recommended as follows: 1) for correctly assessing the mutation status of PIK3CA in breast cancer, especially for cases with low tumor content, 2) for the detection of subclonal mutations, and 3) for simultaneous mutation detection in multiple exons. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12907-015-0020-6) contains supplementary material, which is available to authorized users. BioMed Central 2015-11-18 /pmc/articles/PMC4652376/ /pubmed/26587011 http://dx.doi.org/10.1186/s12907-015-0020-6 Text en © Arsenic et al. 2015 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Arsenic, Ruza Treue, Denise Lehmann, Annika Hummel, Michael Dietel, Manfred Denkert, Carsten Budczies, Jan Comparison of targeted next-generation sequencing and Sanger sequencing for the detection of PIK3CA mutations in breast cancer |
title | Comparison of targeted next-generation sequencing and Sanger sequencing for the detection of PIK3CA mutations in breast cancer |
title_full | Comparison of targeted next-generation sequencing and Sanger sequencing for the detection of PIK3CA mutations in breast cancer |
title_fullStr | Comparison of targeted next-generation sequencing and Sanger sequencing for the detection of PIK3CA mutations in breast cancer |
title_full_unstemmed | Comparison of targeted next-generation sequencing and Sanger sequencing for the detection of PIK3CA mutations in breast cancer |
title_short | Comparison of targeted next-generation sequencing and Sanger sequencing for the detection of PIK3CA mutations in breast cancer |
title_sort | comparison of targeted next-generation sequencing and sanger sequencing for the detection of pik3ca mutations in breast cancer |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4652376/ https://www.ncbi.nlm.nih.gov/pubmed/26587011 http://dx.doi.org/10.1186/s12907-015-0020-6 |
work_keys_str_mv | AT arsenicruza comparisonoftargetednextgenerationsequencingandsangersequencingforthedetectionofpik3camutationsinbreastcancer AT treuedenise comparisonoftargetednextgenerationsequencingandsangersequencingforthedetectionofpik3camutationsinbreastcancer AT lehmannannika comparisonoftargetednextgenerationsequencingandsangersequencingforthedetectionofpik3camutationsinbreastcancer AT hummelmichael comparisonoftargetednextgenerationsequencingandsangersequencingforthedetectionofpik3camutationsinbreastcancer AT dietelmanfred comparisonoftargetednextgenerationsequencingandsangersequencingforthedetectionofpik3camutationsinbreastcancer AT denkertcarsten comparisonoftargetednextgenerationsequencingandsangersequencingforthedetectionofpik3camutationsinbreastcancer AT budcziesjan comparisonoftargetednextgenerationsequencingandsangersequencingforthedetectionofpik3camutationsinbreastcancer |