Cargando…
Intracellular annexin A2 regulates NF-κB signaling by binding to the p50 subunit: implications for gemcitabine resistance in pancreatic cancer
Annexin A2 (ANXA2) expression is highly upregulated in many types of cancer. Although cell surface localization of ANXA2 has been reported to have a critical role in the progression and metastasis of a variety of tumors, including pancreatic cancer, the biological role of intracellular ANXA2 is not...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4669756/ https://www.ncbi.nlm.nih.gov/pubmed/25611381 http://dx.doi.org/10.1038/cddis.2014.558 |
Sumario: | Annexin A2 (ANXA2) expression is highly upregulated in many types of cancer. Although cell surface localization of ANXA2 has been reported to have a critical role in the progression and metastasis of a variety of tumors, including pancreatic cancer, the biological role of intracellular ANXA2 is not fully understood. Herein the role of intracellular ANXA2 was investigated in a pancreatic cancer cell line. We first determined whether ANXA2 is involved in NF-κB signaling pathways. ANXA2 bound to the p50 subunit of NF-κB in a calcium-independent manner, and the ANXA2–p50 complex translocated into the nucleus. Furthermore, ANXA2 increased the transcriptional activity of NF-κB in both the resting and activated states and upregulated the transcription of several target genes downstream of NF-κB, including that encoding interleukin (IL)-6, which contributes to anti-apoptotic signaling. In Mia-Paca2 cells, we determined the effects of wild-type ANXA2 and an ANXA2 mutant, Y23A, which suppresses the cell surface localization, on upregulation of NF-κB transcriptional activity and secretion of IL-6. Both wild-type and Y23A ANXA2 induced anti-apoptotic effects in response to treatment with tumor necrosis factor-α or gemcitabine. Based on these results, we suggest that ANXA2 mediates resistance to gemcitabine by directly increasing the activity of NF-κB. Collectively, these data may provide additional information about the biological role of ANXA2 in pancreatic cancer and suggest that ANXA2 is a potential biomarker for the drug resistance phenotype and a candidate therapeutic target for the treatment of pancreatic cancer. |
---|