Cargando…
MicroRNA-22 inhibits tumor growth and metastasis in gastric cancer by directly targeting MMP14 and Snail
MicroRNAs (miRNAs) deregulation is frequent in human gastric cancers (GCs), but the role of specific miRNAs involved in this disease remains elusive. MiR-22 was previously reported to act as tumor suppressors or oncogenes in diverse cancers. However, their accurate expression, function and mechanism...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4670920/ https://www.ncbi.nlm.nih.gov/pubmed/26610210 http://dx.doi.org/10.1038/cddis.2015.297 |
Sumario: | MicroRNAs (miRNAs) deregulation is frequent in human gastric cancers (GCs), but the role of specific miRNAs involved in this disease remains elusive. MiR-22 was previously reported to act as tumor suppressors or oncogenes in diverse cancers. However, their accurate expression, function and mechanism in GC are largely unclear. Here, we found that the expression of miR-22 was significantly reduced in clinical GC tissues compared with paired adjacent normal tissues, and was significantly correlated with a more aggressive phenotype of GC in patients, and miR-22 low expression correlated with poor overall survival. The introduction of miR-22 markedly suppressed GC cell growth, migration and invasion, and inhibition of miR-22 promoted GC cell proliferation, migration and invasion in vitro. We further demonstrated that miR-22 acted as tumor suppressors through targeting extracellular matrix (ECM) remodeling member matrix metalloproteinase 14 (MMP14) and epithelial-to-mesenchymal transition (EMT) inducer Snail in GC. Moreover, ectopic expression of MMP14 or Snail restored inhibitory effects of miR-22 on cell migration and invasion in GC cells, and a negative relationship between the miR-22 expression and MMP14 or Snail mRNA levels was observed in GC. Finally, overexpression of miR-22 suppressed tumor growth, peritoneal dissemination and pulmonary metastasis in vivo. Taken together, we identified that miR-22 is a potent tumor suppressor in GC. MiR-22 downregulation promotes GC invasion and metastasis by upregulating MMP14 and Snail, and then inducing ECM remodeling and EMT. These findings provide a better understanding of the development and progression of GC and may be an important implication for future therapy of the GC. |
---|