Cargando…

AF4 uses the SL1 components of RNAP1 machinery to initiate MLL fusion- and AEP-dependent transcription

Gene rearrangements generate MLL fusion genes, which can lead to aggressive leukemia. In most cases, MLL fuses with a gene encoding a component of the AEP (AF4 family/ENL family/P-TEFb) coactivator complex. MLL–AEP fusion proteins constitutively activate their target genes to immortalize haematopoie...

Descripción completa

Detalles Bibliográficos
Autores principales: Okuda, Hiroshi, Kanai, Akinori, Ito, Shinji, Matsui, Hirotaka, Yokoyama, Akihiko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Pub. Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4673504/
https://www.ncbi.nlm.nih.gov/pubmed/26593443
http://dx.doi.org/10.1038/ncomms9869
Descripción
Sumario:Gene rearrangements generate MLL fusion genes, which can lead to aggressive leukemia. In most cases, MLL fuses with a gene encoding a component of the AEP (AF4 family/ENL family/P-TEFb) coactivator complex. MLL–AEP fusion proteins constitutively activate their target genes to immortalize haematopoietic progenitors. Here we show that AEP and MLL–AEP fusion proteins activate transcription through selectivity factor 1 (SL1), a core component of the pre-initiation complex (PIC) of RNA polymerase I (RNAP1). The pSER domain of AF4 family proteins associates with SL1 on chromatin and loads TATA-binding protein (TBP) onto the promoter to initiate RNA polymerase II (RNAP2)-dependent transcription. These results reveal a previously unknown transcription initiation mechanism involving AEP and a role for SL1 as a TBP-loading factor in RNAP2-dependent gene activation.