Cargando…

EGFR Regulates the Development and Microarchitecture of Intratumoral Angiogenic Vasculature Capable of Sustaining Cancer Cell Intravasation

Many malignant characteristics of cancer cells are regulated through pathways induced by the tyrosine kinase activity of the epidermal growth factor receptor (EGFR). Herein, we show that besides directly affecting the biology of cancer cells per se, EGFR also regulates the primary tumor microenviron...

Descripción completa

Detalles Bibliográficos
Autores principales: Minder, Petra, Zajac, Ewa, Quigley, James P., Deryugina, Elena I.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Neoplasia Press 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4674488/
https://www.ncbi.nlm.nih.gov/pubmed/26408256
http://dx.doi.org/10.1016/j.neo.2015.08.002
_version_ 1782404903432355840
author Minder, Petra
Zajac, Ewa
Quigley, James P.
Deryugina, Elena I.
author_facet Minder, Petra
Zajac, Ewa
Quigley, James P.
Deryugina, Elena I.
author_sort Minder, Petra
collection PubMed
description Many malignant characteristics of cancer cells are regulated through pathways induced by the tyrosine kinase activity of the epidermal growth factor receptor (EGFR). Herein, we show that besides directly affecting the biology of cancer cells per se, EGFR also regulates the primary tumor microenvironment. Specifically, our findings demonstrate that both the expression and signaling activity of EGFR are required for the induction of a distinct intratumoral vasculature capable of sustaining tumor cell intravasation, a critical rate-limiting step in the metastatic cascade. An intravasation-sustaining mode of intratumoral angiogenic vessels depends on high levels of tumor cell EGFR and the interplay between EGFR-regulated production of interleukin 8 by tumor cells, interleukin-8–induced influx of tumor-infiltrating neutrophils delivering their unique matrix metalloproteinase-9, and neutrophil matrix metalloproteinase-9–dependent release of the vascular permeability and endothelial growth factor, VEGF. Our data indicate that through VEGF-mediated disruption of endothelial layer integrity and increase of intratumoral vasculature permeability, EGFR activity significantly facilitates active intravasation of cancer cells. Therefore, this study unraveled an important but overlooked function of EGFR in cancer, namely, its ability to create an intravasation-sustaining microenvironment within the developing primary tumor by orchestrating several interrelated processes required for the initial steps of cancer metastasis through vascular routes. Our findings also suggest that EGFR-targeted therapies might be more effective when implemented in cancer patients with early-staged primary tumors containing a VEGF-dependent angiogenic vasculature. Accordingly, early EGFR inhibition combined with various anti-VEGF approaches could synergistically suppress tumor cell intravasation through inhibiting the highly permeable angiogenic vasculature induced by EGFR-overexpressing aggressive cancer cells.
format Online
Article
Text
id pubmed-4674488
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Neoplasia Press
record_format MEDLINE/PubMed
spelling pubmed-46744882015-12-30 EGFR Regulates the Development and Microarchitecture of Intratumoral Angiogenic Vasculature Capable of Sustaining Cancer Cell Intravasation Minder, Petra Zajac, Ewa Quigley, James P. Deryugina, Elena I. Neoplasia Article Many malignant characteristics of cancer cells are regulated through pathways induced by the tyrosine kinase activity of the epidermal growth factor receptor (EGFR). Herein, we show that besides directly affecting the biology of cancer cells per se, EGFR also regulates the primary tumor microenvironment. Specifically, our findings demonstrate that both the expression and signaling activity of EGFR are required for the induction of a distinct intratumoral vasculature capable of sustaining tumor cell intravasation, a critical rate-limiting step in the metastatic cascade. An intravasation-sustaining mode of intratumoral angiogenic vessels depends on high levels of tumor cell EGFR and the interplay between EGFR-regulated production of interleukin 8 by tumor cells, interleukin-8–induced influx of tumor-infiltrating neutrophils delivering their unique matrix metalloproteinase-9, and neutrophil matrix metalloproteinase-9–dependent release of the vascular permeability and endothelial growth factor, VEGF. Our data indicate that through VEGF-mediated disruption of endothelial layer integrity and increase of intratumoral vasculature permeability, EGFR activity significantly facilitates active intravasation of cancer cells. Therefore, this study unraveled an important but overlooked function of EGFR in cancer, namely, its ability to create an intravasation-sustaining microenvironment within the developing primary tumor by orchestrating several interrelated processes required for the initial steps of cancer metastasis through vascular routes. Our findings also suggest that EGFR-targeted therapies might be more effective when implemented in cancer patients with early-staged primary tumors containing a VEGF-dependent angiogenic vasculature. Accordingly, early EGFR inhibition combined with various anti-VEGF approaches could synergistically suppress tumor cell intravasation through inhibiting the highly permeable angiogenic vasculature induced by EGFR-overexpressing aggressive cancer cells. Neoplasia Press 2015-09-27 /pmc/articles/PMC4674488/ /pubmed/26408256 http://dx.doi.org/10.1016/j.neo.2015.08.002 Text en © 2015 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Minder, Petra
Zajac, Ewa
Quigley, James P.
Deryugina, Elena I.
EGFR Regulates the Development and Microarchitecture of Intratumoral Angiogenic Vasculature Capable of Sustaining Cancer Cell Intravasation
title EGFR Regulates the Development and Microarchitecture of Intratumoral Angiogenic Vasculature Capable of Sustaining Cancer Cell Intravasation
title_full EGFR Regulates the Development and Microarchitecture of Intratumoral Angiogenic Vasculature Capable of Sustaining Cancer Cell Intravasation
title_fullStr EGFR Regulates the Development and Microarchitecture of Intratumoral Angiogenic Vasculature Capable of Sustaining Cancer Cell Intravasation
title_full_unstemmed EGFR Regulates the Development and Microarchitecture of Intratumoral Angiogenic Vasculature Capable of Sustaining Cancer Cell Intravasation
title_short EGFR Regulates the Development and Microarchitecture of Intratumoral Angiogenic Vasculature Capable of Sustaining Cancer Cell Intravasation
title_sort egfr regulates the development and microarchitecture of intratumoral angiogenic vasculature capable of sustaining cancer cell intravasation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4674488/
https://www.ncbi.nlm.nih.gov/pubmed/26408256
http://dx.doi.org/10.1016/j.neo.2015.08.002
work_keys_str_mv AT minderpetra egfrregulatesthedevelopmentandmicroarchitectureofintratumoralangiogenicvasculaturecapableofsustainingcancercellintravasation
AT zajacewa egfrregulatesthedevelopmentandmicroarchitectureofintratumoralangiogenicvasculaturecapableofsustainingcancercellintravasation
AT quigleyjamesp egfrregulatesthedevelopmentandmicroarchitectureofintratumoralangiogenicvasculaturecapableofsustainingcancercellintravasation
AT deryuginaelenai egfrregulatesthedevelopmentandmicroarchitectureofintratumoralangiogenicvasculaturecapableofsustainingcancercellintravasation