Cargando…

A model for gene deregulation detection using expression data

In tumoral cells, gene regulation mechanisms are severely altered. Genes that do not react normally to their regulators' activity can provide explanations for the tumoral behavior, and be characteristic of cancer subtypes. We thus propose a statistical methodology to identify the misregulated g...

Descripción completa

Detalles Bibliográficos
Autores principales: Picchetti, Thomas, Chiquet, Julien, Elati, Mohamed, Neuvial, Pierre, Nicolle, Rémy, Birmelé, Etienne
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4674863/
https://www.ncbi.nlm.nih.gov/pubmed/26679516
http://dx.doi.org/10.1186/1752-0509-9-S6-S6
Descripción
Sumario:In tumoral cells, gene regulation mechanisms are severely altered. Genes that do not react normally to their regulators' activity can provide explanations for the tumoral behavior, and be characteristic of cancer subtypes. We thus propose a statistical methodology to identify the misregulated genes given a reference network and gene expression data. Our model is based on a regulatory process in which all genes are allowed to be deregulated. We derive an EM algorithm where the hidden variables correspond to the status (under/over/normally expressed) of the genes and where the E-step is solved thanks to a message passing algorithm. Our procedure provides posterior probabilities of deregulation in a given sample for each gene. We assess the performance of our method by numerical experiments on simulations and on a bladder cancer data set.