Cargando…

A model for gene deregulation detection using expression data

In tumoral cells, gene regulation mechanisms are severely altered. Genes that do not react normally to their regulators' activity can provide explanations for the tumoral behavior, and be characteristic of cancer subtypes. We thus propose a statistical methodology to identify the misregulated g...

Descripción completa

Detalles Bibliográficos
Autores principales: Picchetti, Thomas, Chiquet, Julien, Elati, Mohamed, Neuvial, Pierre, Nicolle, Rémy, Birmelé, Etienne
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4674863/
https://www.ncbi.nlm.nih.gov/pubmed/26679516
http://dx.doi.org/10.1186/1752-0509-9-S6-S6
_version_ 1782404962467184640
author Picchetti, Thomas
Chiquet, Julien
Elati, Mohamed
Neuvial, Pierre
Nicolle, Rémy
Birmelé, Etienne
author_facet Picchetti, Thomas
Chiquet, Julien
Elati, Mohamed
Neuvial, Pierre
Nicolle, Rémy
Birmelé, Etienne
author_sort Picchetti, Thomas
collection PubMed
description In tumoral cells, gene regulation mechanisms are severely altered. Genes that do not react normally to their regulators' activity can provide explanations for the tumoral behavior, and be characteristic of cancer subtypes. We thus propose a statistical methodology to identify the misregulated genes given a reference network and gene expression data. Our model is based on a regulatory process in which all genes are allowed to be deregulated. We derive an EM algorithm where the hidden variables correspond to the status (under/over/normally expressed) of the genes and where the E-step is solved thanks to a message passing algorithm. Our procedure provides posterior probabilities of deregulation in a given sample for each gene. We assess the performance of our method by numerical experiments on simulations and on a bladder cancer data set.
format Online
Article
Text
id pubmed-4674863
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-46748632015-12-15 A model for gene deregulation detection using expression data Picchetti, Thomas Chiquet, Julien Elati, Mohamed Neuvial, Pierre Nicolle, Rémy Birmelé, Etienne BMC Syst Biol Research In tumoral cells, gene regulation mechanisms are severely altered. Genes that do not react normally to their regulators' activity can provide explanations for the tumoral behavior, and be characteristic of cancer subtypes. We thus propose a statistical methodology to identify the misregulated genes given a reference network and gene expression data. Our model is based on a regulatory process in which all genes are allowed to be deregulated. We derive an EM algorithm where the hidden variables correspond to the status (under/over/normally expressed) of the genes and where the E-step is solved thanks to a message passing algorithm. Our procedure provides posterior probabilities of deregulation in a given sample for each gene. We assess the performance of our method by numerical experiments on simulations and on a bladder cancer data set. BioMed Central 2015-12-09 /pmc/articles/PMC4674863/ /pubmed/26679516 http://dx.doi.org/10.1186/1752-0509-9-S6-S6 Text en Copyright © 2015 Picchetti et al. http://creativecommons.org/licenses/by/4.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research
Picchetti, Thomas
Chiquet, Julien
Elati, Mohamed
Neuvial, Pierre
Nicolle, Rémy
Birmelé, Etienne
A model for gene deregulation detection using expression data
title A model for gene deregulation detection using expression data
title_full A model for gene deregulation detection using expression data
title_fullStr A model for gene deregulation detection using expression data
title_full_unstemmed A model for gene deregulation detection using expression data
title_short A model for gene deregulation detection using expression data
title_sort model for gene deregulation detection using expression data
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4674863/
https://www.ncbi.nlm.nih.gov/pubmed/26679516
http://dx.doi.org/10.1186/1752-0509-9-S6-S6
work_keys_str_mv AT picchettithomas amodelforgenederegulationdetectionusingexpressiondata
AT chiquetjulien amodelforgenederegulationdetectionusingexpressiondata
AT elatimohamed amodelforgenederegulationdetectionusingexpressiondata
AT neuvialpierre amodelforgenederegulationdetectionusingexpressiondata
AT nicolleremy amodelforgenederegulationdetectionusingexpressiondata
AT birmeleetienne amodelforgenederegulationdetectionusingexpressiondata
AT picchettithomas modelforgenederegulationdetectionusingexpressiondata
AT chiquetjulien modelforgenederegulationdetectionusingexpressiondata
AT elatimohamed modelforgenederegulationdetectionusingexpressiondata
AT neuvialpierre modelforgenederegulationdetectionusingexpressiondata
AT nicolleremy modelforgenederegulationdetectionusingexpressiondata
AT birmeleetienne modelforgenederegulationdetectionusingexpressiondata