Cargando…
A model for gene deregulation detection using expression data
In tumoral cells, gene regulation mechanisms are severely altered. Genes that do not react normally to their regulators' activity can provide explanations for the tumoral behavior, and be characteristic of cancer subtypes. We thus propose a statistical methodology to identify the misregulated g...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4674863/ https://www.ncbi.nlm.nih.gov/pubmed/26679516 http://dx.doi.org/10.1186/1752-0509-9-S6-S6 |
_version_ | 1782404962467184640 |
---|---|
author | Picchetti, Thomas Chiquet, Julien Elati, Mohamed Neuvial, Pierre Nicolle, Rémy Birmelé, Etienne |
author_facet | Picchetti, Thomas Chiquet, Julien Elati, Mohamed Neuvial, Pierre Nicolle, Rémy Birmelé, Etienne |
author_sort | Picchetti, Thomas |
collection | PubMed |
description | In tumoral cells, gene regulation mechanisms are severely altered. Genes that do not react normally to their regulators' activity can provide explanations for the tumoral behavior, and be characteristic of cancer subtypes. We thus propose a statistical methodology to identify the misregulated genes given a reference network and gene expression data. Our model is based on a regulatory process in which all genes are allowed to be deregulated. We derive an EM algorithm where the hidden variables correspond to the status (under/over/normally expressed) of the genes and where the E-step is solved thanks to a message passing algorithm. Our procedure provides posterior probabilities of deregulation in a given sample for each gene. We assess the performance of our method by numerical experiments on simulations and on a bladder cancer data set. |
format | Online Article Text |
id | pubmed-4674863 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-46748632015-12-15 A model for gene deregulation detection using expression data Picchetti, Thomas Chiquet, Julien Elati, Mohamed Neuvial, Pierre Nicolle, Rémy Birmelé, Etienne BMC Syst Biol Research In tumoral cells, gene regulation mechanisms are severely altered. Genes that do not react normally to their regulators' activity can provide explanations for the tumoral behavior, and be characteristic of cancer subtypes. We thus propose a statistical methodology to identify the misregulated genes given a reference network and gene expression data. Our model is based on a regulatory process in which all genes are allowed to be deregulated. We derive an EM algorithm where the hidden variables correspond to the status (under/over/normally expressed) of the genes and where the E-step is solved thanks to a message passing algorithm. Our procedure provides posterior probabilities of deregulation in a given sample for each gene. We assess the performance of our method by numerical experiments on simulations and on a bladder cancer data set. BioMed Central 2015-12-09 /pmc/articles/PMC4674863/ /pubmed/26679516 http://dx.doi.org/10.1186/1752-0509-9-S6-S6 Text en Copyright © 2015 Picchetti et al. http://creativecommons.org/licenses/by/4.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Picchetti, Thomas Chiquet, Julien Elati, Mohamed Neuvial, Pierre Nicolle, Rémy Birmelé, Etienne A model for gene deregulation detection using expression data |
title | A model for gene deregulation detection using expression data |
title_full | A model for gene deregulation detection using expression data |
title_fullStr | A model for gene deregulation detection using expression data |
title_full_unstemmed | A model for gene deregulation detection using expression data |
title_short | A model for gene deregulation detection using expression data |
title_sort | model for gene deregulation detection using expression data |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4674863/ https://www.ncbi.nlm.nih.gov/pubmed/26679516 http://dx.doi.org/10.1186/1752-0509-9-S6-S6 |
work_keys_str_mv | AT picchettithomas amodelforgenederegulationdetectionusingexpressiondata AT chiquetjulien amodelforgenederegulationdetectionusingexpressiondata AT elatimohamed amodelforgenederegulationdetectionusingexpressiondata AT neuvialpierre amodelforgenederegulationdetectionusingexpressiondata AT nicolleremy amodelforgenederegulationdetectionusingexpressiondata AT birmeleetienne amodelforgenederegulationdetectionusingexpressiondata AT picchettithomas modelforgenederegulationdetectionusingexpressiondata AT chiquetjulien modelforgenederegulationdetectionusingexpressiondata AT elatimohamed modelforgenederegulationdetectionusingexpressiondata AT neuvialpierre modelforgenederegulationdetectionusingexpressiondata AT nicolleremy modelforgenederegulationdetectionusingexpressiondata AT birmeleetienne modelforgenederegulationdetectionusingexpressiondata |