Cargando…
Local Geometry and Evolutionary Conservation of Protein Surfaces Reveal the Multiple Recognition Patches in Protein-Protein Interactions
Protein-protein interactions (PPIs) are essential to all biological processes and they represent increasingly important therapeutic targets. Here, we present a new method for accurately predicting protein-protein interfaces, understanding their properties, origins and binding to multiple partners. C...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4686965/ https://www.ncbi.nlm.nih.gov/pubmed/26690684 http://dx.doi.org/10.1371/journal.pcbi.1004580 |
_version_ | 1782406536265465856 |
---|---|
author | Laine, Elodie Carbone, Alessandra |
author_facet | Laine, Elodie Carbone, Alessandra |
author_sort | Laine, Elodie |
collection | PubMed |
description | Protein-protein interactions (PPIs) are essential to all biological processes and they represent increasingly important therapeutic targets. Here, we present a new method for accurately predicting protein-protein interfaces, understanding their properties, origins and binding to multiple partners. Contrary to machine learning approaches, our method combines in a rational and very straightforward way three sequence- and structure-based descriptors of protein residues: evolutionary conservation, physico-chemical properties and local geometry. The implemented strategy yields very precise predictions for a wide range of protein-protein interfaces and discriminates them from small-molecule binding sites. Beyond its predictive power, the approach permits to dissect interaction surfaces and unravel their complexity. We show how the analysis of the predicted patches can foster new strategies for PPIs modulation and interaction surface redesign. The approach is implemented in JET(2), an automated tool based on the Joint Evolutionary Trees (JET) method for sequence-based protein interface prediction. JET(2) is freely available at www.lcqb.upmc.fr/JET2. |
format | Online Article Text |
id | pubmed-4686965 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-46869652016-01-07 Local Geometry and Evolutionary Conservation of Protein Surfaces Reveal the Multiple Recognition Patches in Protein-Protein Interactions Laine, Elodie Carbone, Alessandra PLoS Comput Biol Research Article Protein-protein interactions (PPIs) are essential to all biological processes and they represent increasingly important therapeutic targets. Here, we present a new method for accurately predicting protein-protein interfaces, understanding their properties, origins and binding to multiple partners. Contrary to machine learning approaches, our method combines in a rational and very straightforward way three sequence- and structure-based descriptors of protein residues: evolutionary conservation, physico-chemical properties and local geometry. The implemented strategy yields very precise predictions for a wide range of protein-protein interfaces and discriminates them from small-molecule binding sites. Beyond its predictive power, the approach permits to dissect interaction surfaces and unravel their complexity. We show how the analysis of the predicted patches can foster new strategies for PPIs modulation and interaction surface redesign. The approach is implemented in JET(2), an automated tool based on the Joint Evolutionary Trees (JET) method for sequence-based protein interface prediction. JET(2) is freely available at www.lcqb.upmc.fr/JET2. Public Library of Science 2015-12-21 /pmc/articles/PMC4686965/ /pubmed/26690684 http://dx.doi.org/10.1371/journal.pcbi.1004580 Text en © 2015 Laine, Carbone http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Laine, Elodie Carbone, Alessandra Local Geometry and Evolutionary Conservation of Protein Surfaces Reveal the Multiple Recognition Patches in Protein-Protein Interactions |
title | Local Geometry and Evolutionary Conservation of Protein Surfaces Reveal the Multiple Recognition Patches in Protein-Protein Interactions |
title_full | Local Geometry and Evolutionary Conservation of Protein Surfaces Reveal the Multiple Recognition Patches in Protein-Protein Interactions |
title_fullStr | Local Geometry and Evolutionary Conservation of Protein Surfaces Reveal the Multiple Recognition Patches in Protein-Protein Interactions |
title_full_unstemmed | Local Geometry and Evolutionary Conservation of Protein Surfaces Reveal the Multiple Recognition Patches in Protein-Protein Interactions |
title_short | Local Geometry and Evolutionary Conservation of Protein Surfaces Reveal the Multiple Recognition Patches in Protein-Protein Interactions |
title_sort | local geometry and evolutionary conservation of protein surfaces reveal the multiple recognition patches in protein-protein interactions |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4686965/ https://www.ncbi.nlm.nih.gov/pubmed/26690684 http://dx.doi.org/10.1371/journal.pcbi.1004580 |
work_keys_str_mv | AT laineelodie localgeometryandevolutionaryconservationofproteinsurfacesrevealthemultiplerecognitionpatchesinproteinproteininteractions AT carbonealessandra localgeometryandevolutionaryconservationofproteinsurfacesrevealthemultiplerecognitionpatchesinproteinproteininteractions |