Cargando…
Direct conversion of theophylline to 3-methylxanthine by metabolically engineered E. coli
BACKGROUND: Methylxanthines are natural and synthetic compounds found in many foods, drinks, pharmaceuticals, and cosmetics. Aside from caffeine, production of many methylxanthines is currently performed by chemical synthesis. This process utilizes many chemicals, multiple reactions, and different r...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4687300/ https://www.ncbi.nlm.nih.gov/pubmed/26691652 http://dx.doi.org/10.1186/s12934-015-0395-1 |
_version_ | 1782406607234138112 |
---|---|
author | Algharrawi, Khalid H. R. Summers, Ryan M. Gopishetty, Sridhar Subramanian, Mani |
author_facet | Algharrawi, Khalid H. R. Summers, Ryan M. Gopishetty, Sridhar Subramanian, Mani |
author_sort | Algharrawi, Khalid H. R. |
collection | PubMed |
description | BACKGROUND: Methylxanthines are natural and synthetic compounds found in many foods, drinks, pharmaceuticals, and cosmetics. Aside from caffeine, production of many methylxanthines is currently performed by chemical synthesis. This process utilizes many chemicals, multiple reactions, and different reaction conditions, making it complicated, environmentally dissatisfactory, and expensive, especially for monomethylxanthines and paraxanthine. A microbial platform could provide an economical, environmentally friendly approach to produce these chemicals in large quantities. The recently discovered genes in our laboratory from Pseudomonasputida, ndmA, ndmB, and ndmD, provide an excellent starting point for precisely engineering Escherichia coli with various gene combinations to produce specific high-value paraxanthine and 1-, 3-, and 7-methylxanthines from any of the economical feedstocks including caffeine, theobromine or theophylline. Here, we show the first example of direct conversion of theophylline to 3-methylxanthine by a metabolically engineered strain of E. coli. RESULTS: Here we report the construction of E. coli strains with ndmA and ndmD, capable of producing 3-methylxanthine from exogenously fed theophylline. The strains were engineered with various dosages of the ndmA and ndmD genes, screened, and the best strain was selected for large-scale conversion of theophylline to 3-methylxanthine. Strain pDdA grown in super broth was the most efficient strain; 15 mg/mL cells produced 135 mg/L (0.81 mM) 3-methylxanthine from 1 mM theophylline. An additional 21.6 mg/L (0.13 mM) 1-methylxanthine were also produced, attributed to slight activity of NdmA at the N(3)-position of theophylline. The 1- and 3-methylxanthine products were separated by preparative chromatography with less than 5 % loss during purification and were identical to commercially available standards. Purity of the isolated 3-methylxanthine was comparable to a commercially available standard, with no contaminant peaks as observed by liquid chromatography-mass spectrophotometry or nuclear magnetic resonance. CONCLUSIONS: We were able to biologically produce and separate 100 mg of highly pure 3-methylxanthine from theophylline (1,3-dimethylxanthine). The N-demethylation reaction was catalyzed by E. coli engineered with N-demethylase genes, ndmA and ndmD. This microbial conversion represents a first step to develop a new biological platform for the production of methylxanthines from economical feedstocks such as caffeine, theobromine, and theophylline. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12934-015-0395-1) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4687300 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-46873002015-12-23 Direct conversion of theophylline to 3-methylxanthine by metabolically engineered E. coli Algharrawi, Khalid H. R. Summers, Ryan M. Gopishetty, Sridhar Subramanian, Mani Microb Cell Fact Research BACKGROUND: Methylxanthines are natural and synthetic compounds found in many foods, drinks, pharmaceuticals, and cosmetics. Aside from caffeine, production of many methylxanthines is currently performed by chemical synthesis. This process utilizes many chemicals, multiple reactions, and different reaction conditions, making it complicated, environmentally dissatisfactory, and expensive, especially for monomethylxanthines and paraxanthine. A microbial platform could provide an economical, environmentally friendly approach to produce these chemicals in large quantities. The recently discovered genes in our laboratory from Pseudomonasputida, ndmA, ndmB, and ndmD, provide an excellent starting point for precisely engineering Escherichia coli with various gene combinations to produce specific high-value paraxanthine and 1-, 3-, and 7-methylxanthines from any of the economical feedstocks including caffeine, theobromine or theophylline. Here, we show the first example of direct conversion of theophylline to 3-methylxanthine by a metabolically engineered strain of E. coli. RESULTS: Here we report the construction of E. coli strains with ndmA and ndmD, capable of producing 3-methylxanthine from exogenously fed theophylline. The strains were engineered with various dosages of the ndmA and ndmD genes, screened, and the best strain was selected for large-scale conversion of theophylline to 3-methylxanthine. Strain pDdA grown in super broth was the most efficient strain; 15 mg/mL cells produced 135 mg/L (0.81 mM) 3-methylxanthine from 1 mM theophylline. An additional 21.6 mg/L (0.13 mM) 1-methylxanthine were also produced, attributed to slight activity of NdmA at the N(3)-position of theophylline. The 1- and 3-methylxanthine products were separated by preparative chromatography with less than 5 % loss during purification and were identical to commercially available standards. Purity of the isolated 3-methylxanthine was comparable to a commercially available standard, with no contaminant peaks as observed by liquid chromatography-mass spectrophotometry or nuclear magnetic resonance. CONCLUSIONS: We were able to biologically produce and separate 100 mg of highly pure 3-methylxanthine from theophylline (1,3-dimethylxanthine). The N-demethylation reaction was catalyzed by E. coli engineered with N-demethylase genes, ndmA and ndmD. This microbial conversion represents a first step to develop a new biological platform for the production of methylxanthines from economical feedstocks such as caffeine, theobromine, and theophylline. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12934-015-0395-1) contains supplementary material, which is available to authorized users. BioMed Central 2015-12-21 /pmc/articles/PMC4687300/ /pubmed/26691652 http://dx.doi.org/10.1186/s12934-015-0395-1 Text en © Algharrawi et al. 2015 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Algharrawi, Khalid H. R. Summers, Ryan M. Gopishetty, Sridhar Subramanian, Mani Direct conversion of theophylline to 3-methylxanthine by metabolically engineered E. coli |
title | Direct conversion of theophylline to 3-methylxanthine by metabolically engineered E. coli |
title_full | Direct conversion of theophylline to 3-methylxanthine by metabolically engineered E. coli |
title_fullStr | Direct conversion of theophylline to 3-methylxanthine by metabolically engineered E. coli |
title_full_unstemmed | Direct conversion of theophylline to 3-methylxanthine by metabolically engineered E. coli |
title_short | Direct conversion of theophylline to 3-methylxanthine by metabolically engineered E. coli |
title_sort | direct conversion of theophylline to 3-methylxanthine by metabolically engineered e. coli |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4687300/ https://www.ncbi.nlm.nih.gov/pubmed/26691652 http://dx.doi.org/10.1186/s12934-015-0395-1 |
work_keys_str_mv | AT algharrawikhalidhr directconversionoftheophyllineto3methylxanthinebymetabolicallyengineeredecoli AT summersryanm directconversionoftheophyllineto3methylxanthinebymetabolicallyengineeredecoli AT gopishettysridhar directconversionoftheophyllineto3methylxanthinebymetabolicallyengineeredecoli AT subramanianmani directconversionoftheophyllineto3methylxanthinebymetabolicallyengineeredecoli |