Cargando…
Assessment of Interspecies Differences in Drug-Induced QTc Interval Prolongation in Cynomolgus Monkeys, Dogs and Humans
BACKGROUND AND PURPOSE: The selection of the most suitable animal species and subsequent translation of the concentration-effect relationship to humans are critical steps for accurate assessment of the pro-arrhythmic risk of candidate molecules. The objective of this investigation was to assess quan...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4689776/ https://www.ncbi.nlm.nih.gov/pubmed/26553352 http://dx.doi.org/10.1007/s11095-015-1760-9 |
_version_ | 1782406889846341632 |
---|---|
author | Dubois, V. F. S. de Witte, W. E. A. Visser, S. A. G. Danhof, M. Della Pasqua, O. |
author_facet | Dubois, V. F. S. de Witte, W. E. A. Visser, S. A. G. Danhof, M. Della Pasqua, O. |
author_sort | Dubois, V. F. S. |
collection | PubMed |
description | BACKGROUND AND PURPOSE: The selection of the most suitable animal species and subsequent translation of the concentration-effect relationship to humans are critical steps for accurate assessment of the pro-arrhythmic risk of candidate molecules. The objective of this investigation was to assess quantitatively the differences in the QTc prolonging effects of moxifloxacin between cynomolgus monkeys, dogs and humans. The impact of interspecies differences is also illustrated for a new candidate molecule. EXPERIMENTAL APPROACH: Pharmacokinetic data and ECG recordings from pre-clinical protocols in monkeys and dogs and from a phase I trial in healthy subjects were identified for the purpose of this analysis. A previously established Bayesian model describing the combined effect of heart rate, circadian variation and drug effect on the QT interval was used to describe the pharmacokinetic-pharmacodynamic relationships. The probability of a ≥10 ms increase in QT was derived as measure of the pro-arrhythmic effect. KEY RESULTS: For moxifloxacin, the concentrations associated with a 50% probability of QT prolongation ≥10 ms (Cp(50)) varied from 20.3 to 6.4 and 2.6 μM in dogs, monkeys and humans, respectively. For NCE05, these values were 0.4 μM vs 2.0 μM for monkeys and humans, respectively. CONCLUSIONS AND IMPLICATIONS: Our findings reveal significant interspecies differences in the QT-prolonging effect of moxifloxacin. In addition to the dissimilarity in pharmacokinetics across species, it is likely that differences in pharmacodynamics also play an important role. It appears that, regardless of the animal model used, a translation function is needed to predict concentration-effect relationships in humans. |
format | Online Article Text |
id | pubmed-4689776 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Springer US |
record_format | MEDLINE/PubMed |
spelling | pubmed-46897762015-12-31 Assessment of Interspecies Differences in Drug-Induced QTc Interval Prolongation in Cynomolgus Monkeys, Dogs and Humans Dubois, V. F. S. de Witte, W. E. A. Visser, S. A. G. Danhof, M. Della Pasqua, O. Pharm Res Research Paper BACKGROUND AND PURPOSE: The selection of the most suitable animal species and subsequent translation of the concentration-effect relationship to humans are critical steps for accurate assessment of the pro-arrhythmic risk of candidate molecules. The objective of this investigation was to assess quantitatively the differences in the QTc prolonging effects of moxifloxacin between cynomolgus monkeys, dogs and humans. The impact of interspecies differences is also illustrated for a new candidate molecule. EXPERIMENTAL APPROACH: Pharmacokinetic data and ECG recordings from pre-clinical protocols in monkeys and dogs and from a phase I trial in healthy subjects were identified for the purpose of this analysis. A previously established Bayesian model describing the combined effect of heart rate, circadian variation and drug effect on the QT interval was used to describe the pharmacokinetic-pharmacodynamic relationships. The probability of a ≥10 ms increase in QT was derived as measure of the pro-arrhythmic effect. KEY RESULTS: For moxifloxacin, the concentrations associated with a 50% probability of QT prolongation ≥10 ms (Cp(50)) varied from 20.3 to 6.4 and 2.6 μM in dogs, monkeys and humans, respectively. For NCE05, these values were 0.4 μM vs 2.0 μM for monkeys and humans, respectively. CONCLUSIONS AND IMPLICATIONS: Our findings reveal significant interspecies differences in the QT-prolonging effect of moxifloxacin. In addition to the dissimilarity in pharmacokinetics across species, it is likely that differences in pharmacodynamics also play an important role. It appears that, regardless of the animal model used, a translation function is needed to predict concentration-effect relationships in humans. Springer US 2015-11-09 2016 /pmc/articles/PMC4689776/ /pubmed/26553352 http://dx.doi.org/10.1007/s11095-015-1760-9 Text en © The Author(s) 2015 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Research Paper Dubois, V. F. S. de Witte, W. E. A. Visser, S. A. G. Danhof, M. Della Pasqua, O. Assessment of Interspecies Differences in Drug-Induced QTc Interval Prolongation in Cynomolgus Monkeys, Dogs and Humans |
title | Assessment of Interspecies Differences in Drug-Induced QTc Interval Prolongation in Cynomolgus Monkeys, Dogs and Humans |
title_full | Assessment of Interspecies Differences in Drug-Induced QTc Interval Prolongation in Cynomolgus Monkeys, Dogs and Humans |
title_fullStr | Assessment of Interspecies Differences in Drug-Induced QTc Interval Prolongation in Cynomolgus Monkeys, Dogs and Humans |
title_full_unstemmed | Assessment of Interspecies Differences in Drug-Induced QTc Interval Prolongation in Cynomolgus Monkeys, Dogs and Humans |
title_short | Assessment of Interspecies Differences in Drug-Induced QTc Interval Prolongation in Cynomolgus Monkeys, Dogs and Humans |
title_sort | assessment of interspecies differences in drug-induced qtc interval prolongation in cynomolgus monkeys, dogs and humans |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4689776/ https://www.ncbi.nlm.nih.gov/pubmed/26553352 http://dx.doi.org/10.1007/s11095-015-1760-9 |
work_keys_str_mv | AT duboisvfs assessmentofinterspeciesdifferencesindruginducedqtcintervalprolongationincynomolgusmonkeysdogsandhumans AT dewittewea assessmentofinterspeciesdifferencesindruginducedqtcintervalprolongationincynomolgusmonkeysdogsandhumans AT vissersag assessmentofinterspeciesdifferencesindruginducedqtcintervalprolongationincynomolgusmonkeysdogsandhumans AT danhofm assessmentofinterspeciesdifferencesindruginducedqtcintervalprolongationincynomolgusmonkeysdogsandhumans AT dellapasquao assessmentofinterspeciesdifferencesindruginducedqtcintervalprolongationincynomolgusmonkeysdogsandhumans AT assessmentofinterspeciesdifferencesindruginducedqtcintervalprolongationincynomolgusmonkeysdogsandhumans AT assessmentofinterspeciesdifferencesindruginducedqtcintervalprolongationincynomolgusmonkeysdogsandhumans |