Cargando…

Cdk5r1 Overexpression Induces Primary β-Cell Proliferation

Decreased β-cell mass is a hallmark of type 1 and type 2 diabetes. Islet transplantation as a method of diabetes therapy is hampered by the paucity of transplant ready islets. Understanding the pathways controlling islet proliferation may be used to increase functional β-cell mass through transplant...

Descripción completa

Detalles Bibliográficos
Autores principales: Draney, Carrie, Hobson, Amanda E., Grover, Samuel G., Jack, Benjamin O., Tessem, Jeffery S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4691621/
https://www.ncbi.nlm.nih.gov/pubmed/26788519
http://dx.doi.org/10.1155/2016/6375804
Descripción
Sumario:Decreased β-cell mass is a hallmark of type 1 and type 2 diabetes. Islet transplantation as a method of diabetes therapy is hampered by the paucity of transplant ready islets. Understanding the pathways controlling islet proliferation may be used to increase functional β-cell mass through transplantation or by enhanced growth of endogenous β-cells. We have shown that the transcription factor Nkx6.1 induces β-cell proliferation by upregulating the orphan nuclear hormone receptors Nr4a1 and Nr4a3. Using expression analysis to define Nkx6.1-independent mechanisms by which Nr4a1 and Nr4a3 induce β-cell proliferation, we demonstrated that cyclin-dependent kinase 5 regulatory subunit 1 (Cdk5r1) is upregulated by Nr4a1 and Nr4a3 but not by Nkx6.1. Overexpression of Cdk5r1 is sufficient to induce primary rat β-cell proliferation while maintaining glucose stimulated insulin secretion. Overexpression of Cdk5r1 in β-cells confers protection against apoptosis induced by etoposide and thapsigargin, but not camptothecin. The Cdk5 kinase complex inhibitor roscovitine blocks islet proliferation, suggesting that Cdk5r1 mediated β-cell proliferation is a kinase dependent event. Overexpression of Cdk5r1 results in pRb phosphorylation, which is inhibited by roscovitine treatment. These data demonstrate that activation of the Cdk5 kinase complex is sufficient to induce β-cell proliferation while maintaining glucose stimulated insulin secretion.