Cargando…
CBX7 and miR‐9 are part of an autoregulatory loop controlling p16(INK) (4a)
Polycomb repressive complexes (PRC1 and PRC2) are epigenetic regulators that act in coordination to influence multiple cellular processes including pluripotency, differentiation, cancer and senescence. The role of PRCs in senescence can be mostly explained by their ability to repress the INK4/ARF lo...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4693451/ https://www.ncbi.nlm.nih.gov/pubmed/26416703 http://dx.doi.org/10.1111/acel.12404 |
_version_ | 1782407392037699584 |
---|---|
author | O'Loghlen, Ana Brookes, Sharon Martin, Nadine Rapisarda, Valentina Peters, Gordon Gil, Jesús |
author_facet | O'Loghlen, Ana Brookes, Sharon Martin, Nadine Rapisarda, Valentina Peters, Gordon Gil, Jesús |
author_sort | O'Loghlen, Ana |
collection | PubMed |
description | Polycomb repressive complexes (PRC1 and PRC2) are epigenetic regulators that act in coordination to influence multiple cellular processes including pluripotency, differentiation, cancer and senescence. The role of PRCs in senescence can be mostly explained by their ability to repress the INK4/ARF locus. CBX7 is one of five mammalian orthologues of Drosophila Polycomb that forms part of PRC1. Despite the relevance of CBX7 for regulating senescence and pluripotency, we have a limited understanding of how the expression of CBX7 is regulated. Here we report that the miR‐9 family of microRNAs (miRNAS) downregulates the expression of CBX7. In turn, CBX7 represses miR‐9‐1 and miR‐9‐2 as part of a regulatory negative feedback loop. The miR‐9/CBX7 feedback loop is a regulatory module contributing to induction of the cyclin‐dependent kinase inhibitor (CDKI) p16(INK) (4a) during senescence. The ability of the miR‐9 family to regulate senescence could have implications for understanding the role of miR‐9 in cancer and aging. |
format | Online Article Text |
id | pubmed-4693451 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-46934512016-01-04 CBX7 and miR‐9 are part of an autoregulatory loop controlling p16(INK) (4a) O'Loghlen, Ana Brookes, Sharon Martin, Nadine Rapisarda, Valentina Peters, Gordon Gil, Jesús Aging Cell Original Articles Polycomb repressive complexes (PRC1 and PRC2) are epigenetic regulators that act in coordination to influence multiple cellular processes including pluripotency, differentiation, cancer and senescence. The role of PRCs in senescence can be mostly explained by their ability to repress the INK4/ARF locus. CBX7 is one of five mammalian orthologues of Drosophila Polycomb that forms part of PRC1. Despite the relevance of CBX7 for regulating senescence and pluripotency, we have a limited understanding of how the expression of CBX7 is regulated. Here we report that the miR‐9 family of microRNAs (miRNAS) downregulates the expression of CBX7. In turn, CBX7 represses miR‐9‐1 and miR‐9‐2 as part of a regulatory negative feedback loop. The miR‐9/CBX7 feedback loop is a regulatory module contributing to induction of the cyclin‐dependent kinase inhibitor (CDKI) p16(INK) (4a) during senescence. The ability of the miR‐9 family to regulate senescence could have implications for understanding the role of miR‐9 in cancer and aging. John Wiley and Sons Inc. 2015-09-29 2015-12 /pmc/articles/PMC4693451/ /pubmed/26416703 http://dx.doi.org/10.1111/acel.12404 Text en © 2015 The Author. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Articles O'Loghlen, Ana Brookes, Sharon Martin, Nadine Rapisarda, Valentina Peters, Gordon Gil, Jesús CBX7 and miR‐9 are part of an autoregulatory loop controlling p16(INK) (4a) |
title |
CBX7 and miR‐9 are part of an autoregulatory loop controlling p16(INK)
(4a)
|
title_full |
CBX7 and miR‐9 are part of an autoregulatory loop controlling p16(INK)
(4a)
|
title_fullStr |
CBX7 and miR‐9 are part of an autoregulatory loop controlling p16(INK)
(4a)
|
title_full_unstemmed |
CBX7 and miR‐9 are part of an autoregulatory loop controlling p16(INK)
(4a)
|
title_short |
CBX7 and miR‐9 are part of an autoregulatory loop controlling p16(INK)
(4a)
|
title_sort | cbx7 and mir‐9 are part of an autoregulatory loop controlling p16(ink)
(4a) |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4693451/ https://www.ncbi.nlm.nih.gov/pubmed/26416703 http://dx.doi.org/10.1111/acel.12404 |
work_keys_str_mv | AT ologhlenana cbx7andmir9arepartofanautoregulatoryloopcontrollingp16ink4a AT brookessharon cbx7andmir9arepartofanautoregulatoryloopcontrollingp16ink4a AT martinnadine cbx7andmir9arepartofanautoregulatoryloopcontrollingp16ink4a AT rapisardavalentina cbx7andmir9arepartofanautoregulatoryloopcontrollingp16ink4a AT petersgordon cbx7andmir9arepartofanautoregulatoryloopcontrollingp16ink4a AT giljesus cbx7andmir9arepartofanautoregulatoryloopcontrollingp16ink4a |