Cargando…
Tankyrase inhibitors attenuate WNT/β-catenin signaling and inhibit growth of hepatocellular carcinoma cells
Deregulated WNT/β-catenin signaling contributes to the development of a subgroup of hepatocellular carcinoma (HCC), the second leading cause of cancer deaths worldwide. Within this pathway, the tankyrase enzymes (TNKS1 and TNKS2) degrade AXIN and thereby enhance β-catenin activity. We evaluate TNKS...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4694839/ https://www.ncbi.nlm.nih.gov/pubmed/26246473 |
_version_ | 1782407534392377344 |
---|---|
author | Ma, Li Wang, Xiaolin Jia, Tao Wei, Wei Chua, Mei-Sze So, Samuel |
author_facet | Ma, Li Wang, Xiaolin Jia, Tao Wei, Wei Chua, Mei-Sze So, Samuel |
author_sort | Ma, Li |
collection | PubMed |
description | Deregulated WNT/β-catenin signaling contributes to the development of a subgroup of hepatocellular carcinoma (HCC), the second leading cause of cancer deaths worldwide. Within this pathway, the tankyrase enzymes (TNKS1 and TNKS2) degrade AXIN and thereby enhance β-catenin activity. We evaluate TNKS enzymes as potential therapeutic targets in HCC, and the anti-tumor efficacy of tankyrase inhibitors (XAV939, and its novel nitro-substituted derivative WXL-8) in HCC cells. Using semi-quantitative RT-PCR, we found significantly elevated levels of TNKS1/2 mRNA in tumor liver tissues compared to adjacent non-tumor livers, at protein levels only TNKS1 is increased. In HepG2, Huh7cells, siRNA-mediated knockdown suppression of endogenous TNKS1 and TNKS2 reduced cell proliferation, together with decreased nuclear β-catenin levels. XAV939 and WXL-8 inhibited cell proliferation and colony formation in HepG2, Huh7, and Hep40 cells (p < 0.05), with stabilization of AXIN1 and AXIN2, and decreased β-catenin protein levels. XAV939 and WXL-8 also attenuated rhWNT3A-induced TOPflash luciferase reporter activity in HCC cells, indicating reduced β-catenin transcriptional activity, consistent with decreased nuclear β-catenin levels. In vivo, intra-tumor injections of XAV939 or WXL-8 significantly inhibited the growth of subcutaneous HepG2 xenografts (P < 0.05). We suggest that tankyrase inhibition is a potential therapeutic approach for treating a subgroup HCC with aberrant WNT/β-catenin signaling pathway. |
format | Online Article Text |
id | pubmed-4694839 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Impact Journals LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-46948392016-01-20 Tankyrase inhibitors attenuate WNT/β-catenin signaling and inhibit growth of hepatocellular carcinoma cells Ma, Li Wang, Xiaolin Jia, Tao Wei, Wei Chua, Mei-Sze So, Samuel Oncotarget Research Paper Deregulated WNT/β-catenin signaling contributes to the development of a subgroup of hepatocellular carcinoma (HCC), the second leading cause of cancer deaths worldwide. Within this pathway, the tankyrase enzymes (TNKS1 and TNKS2) degrade AXIN and thereby enhance β-catenin activity. We evaluate TNKS enzymes as potential therapeutic targets in HCC, and the anti-tumor efficacy of tankyrase inhibitors (XAV939, and its novel nitro-substituted derivative WXL-8) in HCC cells. Using semi-quantitative RT-PCR, we found significantly elevated levels of TNKS1/2 mRNA in tumor liver tissues compared to adjacent non-tumor livers, at protein levels only TNKS1 is increased. In HepG2, Huh7cells, siRNA-mediated knockdown suppression of endogenous TNKS1 and TNKS2 reduced cell proliferation, together with decreased nuclear β-catenin levels. XAV939 and WXL-8 inhibited cell proliferation and colony formation in HepG2, Huh7, and Hep40 cells (p < 0.05), with stabilization of AXIN1 and AXIN2, and decreased β-catenin protein levels. XAV939 and WXL-8 also attenuated rhWNT3A-induced TOPflash luciferase reporter activity in HCC cells, indicating reduced β-catenin transcriptional activity, consistent with decreased nuclear β-catenin levels. In vivo, intra-tumor injections of XAV939 or WXL-8 significantly inhibited the growth of subcutaneous HepG2 xenografts (P < 0.05). We suggest that tankyrase inhibition is a potential therapeutic approach for treating a subgroup HCC with aberrant WNT/β-catenin signaling pathway. Impact Journals LLC 2015-06-27 /pmc/articles/PMC4694839/ /pubmed/26246473 Text en Copyright: © 2015 Ma et al. http://creativecommons.org/licenses/by/2.5/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Paper Ma, Li Wang, Xiaolin Jia, Tao Wei, Wei Chua, Mei-Sze So, Samuel Tankyrase inhibitors attenuate WNT/β-catenin signaling and inhibit growth of hepatocellular carcinoma cells |
title | Tankyrase inhibitors attenuate WNT/β-catenin signaling and inhibit growth of hepatocellular carcinoma cells |
title_full | Tankyrase inhibitors attenuate WNT/β-catenin signaling and inhibit growth of hepatocellular carcinoma cells |
title_fullStr | Tankyrase inhibitors attenuate WNT/β-catenin signaling and inhibit growth of hepatocellular carcinoma cells |
title_full_unstemmed | Tankyrase inhibitors attenuate WNT/β-catenin signaling and inhibit growth of hepatocellular carcinoma cells |
title_short | Tankyrase inhibitors attenuate WNT/β-catenin signaling and inhibit growth of hepatocellular carcinoma cells |
title_sort | tankyrase inhibitors attenuate wnt/β-catenin signaling and inhibit growth of hepatocellular carcinoma cells |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4694839/ https://www.ncbi.nlm.nih.gov/pubmed/26246473 |
work_keys_str_mv | AT mali tankyraseinhibitorsattenuatewntbcateninsignalingandinhibitgrowthofhepatocellularcarcinomacells AT wangxiaolin tankyraseinhibitorsattenuatewntbcateninsignalingandinhibitgrowthofhepatocellularcarcinomacells AT jiatao tankyraseinhibitorsattenuatewntbcateninsignalingandinhibitgrowthofhepatocellularcarcinomacells AT weiwei tankyraseinhibitorsattenuatewntbcateninsignalingandinhibitgrowthofhepatocellularcarcinomacells AT chuameisze tankyraseinhibitorsattenuatewntbcateninsignalingandinhibitgrowthofhepatocellularcarcinomacells AT sosamuel tankyraseinhibitorsattenuatewntbcateninsignalingandinhibitgrowthofhepatocellularcarcinomacells |