Cargando…
Extracellularly secreted APE1/Ref-1 triggers apoptosis in triple-negative breast cancer cells via RAGE binding, which is mediated through acetylation
The present study evaluated the mechanism of apoptosis caused by post-translational modification, hyperacetylation in triple-negative breast cancer (TNBC) cells. We previously showed that trichostatin A (TSA) induced secretion of acetylated apurinic apyrimidinic endonuclease 1/redox factor-1 (Ac-APE...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4695125/ https://www.ncbi.nlm.nih.gov/pubmed/26125438 |
Sumario: | The present study evaluated the mechanism of apoptosis caused by post-translational modification, hyperacetylation in triple-negative breast cancer (TNBC) cells. We previously showed that trichostatin A (TSA) induced secretion of acetylated apurinic apyrimidinic endonuclease 1/redox factor-1 (Ac-APE1/Ref-1). This is the first report showing that Ac-APE1/Ref-1 initiates apoptosis in TNBC cells by binding to the receptor for advanced glycation end products (RAGE). The functional significance of secreted Ac-APE1/Ref-1 was studied by induction of intracellular hyperacetylation through co-treatment with acetylsalicylic acid and TSA in MDA-MB-231 cells. In response to hyperacetylation, secretion of Ac-APE1/Ref-1 in vesicles was observed, resulting in significantly decreased cell viability and induction of apoptosis with increased expression of RAGE. The hyperacetylation-induced apoptosis was similar in two other TNBC cell lines: BT-459 and MDA-MB-468. Therefore, hyperacetylation may be a therapeutic target for treatment of TNBCs. This study introduces a novel paradigm whereby post-translational modification induces apoptotic cell death in breast cancer cells resistant to standard chemotherapeutic agents through secretion of auto- or paracrine molecules such as Ac-APE1/Ref-1. |
---|